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A COMPARISON OF SEVERAL COASTAL OCEAN MODELS

1.0 INTRODUCTION

This report presents results from a comparison of several ocean models that are being used for
coastal simulation and prediction. The models are tested to determine their ability to simulate basic
physical processes of importance in the coastal ocean. The purpose of the comparison is to look at
the pros and cons of the models, to identify particular problems, and to provide a baseline for
testing future models and making improvements. The overall goal is to try to determine the best
models and/or parameterizations for either general or particular applications.

Physical processes important in the coastal ocean include tides, wind setup and storm surge,
wind-driven circulation, river outflows and fresh water runoff, surface and internal waves,
advection, mixing, coastal-trapped waves, upwelling and downwelling, and frontal dynamics. With
the exception of short-spatial-scale, non-hydrostatic effects, e.g., such as occur with short-
wavelength, high-amplitude internal waves, these processes can generally be adequately simulated
with hydrostatic, three-dimensional (3-D) models of the type to be compared in this study.

We note that sediment and biological processes and their effect on the water's optical properties
are also very important in the coastal environment. However, investigation of these processes,
which requires that sediment, biological, and optical submodels be linked to the ocean circulation
models, is not addressed here.

The model comparison was restricted to ocean models that include a free surface and predict
the 3-D fields of ocean currents, temperature, and salinity. A number of widely used ocean models
employ a rigid lid to filter out surface gravity waves and avoid the timestep restriction imposed by
surface waves. Rigid-lid models can be used to investigate many important coastal processes.
However, a free surface is needed for the prediction of tides and storm surge. Hence, a model that
is to be used to simulate the complete range of coastal processes should have a free surface.

The models compared herb include the Princeton Ocean Model (POM), which was originally
developed by Alan Blumberg and George Mellor (Blumberg and Mellor 1987); the Estuarine and
Coastal Ocean Model, Semi-Implicit version (ECOM-si) of Alan Blumberg, which is based on
the original Princeton model, but has some significant modifications (Blumberg 1992); the Sigma
z-level model (SZM), developed in house at the Naval Research Laboratory (NRL) (Martin 1998);
and the S-Coordinate Rutgers University Model (SCRUM), which was developed by Tony Song and
Dale Haidvogel (Song and Haidvogel 1994).

POM is probably the most widely used of all baroclinic coastal ocean models and has been
applied to a wide range of coastal problems. A list of publications in which POM has been used
is available from the POM ftp site at Princeton University (ftp.gfdl.gov) and has over 100 listings.
POM was originally developed by Alan Blumberg and George Mellor in the early 1980s. Since that
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time, there have been contributions to the program by others, notably Leo Oey, Boris Galperin, and
Lakshmi Kantha. The major features of POM are (a) the use of an Arakawa "C" grid, (b) second-
order, centered spatial finite differencing, (c) leapfrog time differencing with an Asselin temporal
filter to eliminate time splitting, (d) an explicit treatment of the surface waves using a smaller
timestep than that used for the internal mode, (e) a sigma (bottom following) vertical coordinate,
(f) an implicit treatment of vertical mixing, and (g) the use of the Mellor-Yamada Level 2.5
(MYL2.5) turbulence scheme to calculate vertical mixing.

ECOM-si is based on POM, but contains some significant modifications that were implemented
by Alan Blumberg, Vincenzo Casulli, and Ralph Cheng. The main differences from POM are (a)
the use of a two-time-level temporal scheme rather than leapfrog, (b) the use of an implicit rather
than an explicit scheme for the free surface, and (c) the addition of a wetting/drying capability.

SZM was developed at NRL to provide a model than can use both sigma and z-level (i.e., fixed
depth) vertical coordinates. The model uses sigma coordinates down to a user-specified depth and
z-levels below. This allows some flexibility in setting up the vertical grid and allows comparisons
to be made between sigma and z-level coordinates. In other respects, SZM is similar to POM,
except that it has an implicit treatment of the free surface and uses the simpler Mellor-Yamada
Level 2 (MYL2) turbulence scheme.

SCRUM is one of a variety of ocean models that have been developed by Dale Haidvogel's
ocean modeling group at Rutgers University. Dale Haidvogel's group is known for trying a wide
range of ocean modeling techniques, including spectral and finite element (FE) methods. The best
known of their models is the Semi-spectral Primitive Equation Model (SPEM) (Haidvogel et al.
1991). SPEM has been used in a number of modeling studies that have appeared in the oceanographic
literature; however, SPEM is limited for coastal applications because of its rigid lid.

SCRUM (Version 2.1) uses finite differences (FD) in the horizontal, but uses FE in the ver-
tical. Other major differences from the other models being compared here are (a) the use of a
third-order Adams-Bashforth temporal scheme for most the baroclinic terms, (b) the use of the
Crank-Nicolson semi-implicit scheme for vertical advection and mixing, and (c) the use of a
generalized sigma coordinate system in the vertical, called an "" coordinate by Song and Haidvogel,
that allows changing the relative spacing of the vertical layers as the depth of the water changes.
The "" coordinate allows greater flexibility in setting vertical resolution than a standard sigma
coordinate, e.g., it allows one to maintain a minimum resolution in the surface and/or bottom
boundary layers as the water depth increases. SCRUM uses a split-explicit scheme for the free
surface and offers a choice of turbulence schemes, MYL2, Price, and Pacanowski and Philander (PP)
to calculate the vertical mixing coefficients.

A problem that was encountered in testing SCRUM was that during the period over which the
model comparisons were conducted, SCRUM was still undergoing some development. The version
of SCRUM that was started with, Version 2.1, was discovered to have some problems, and testing
was begun on the other three models while waiting for a more fully developed version of SCRUM to
become available. About this time, Tony Song (who did most of the original development of
SCRUM) left Rutgers, and the development of SCRUM at Rutgers was continued by Hernan
Arango. SCRUM Version 3.0 was released by Rutgers (Arango, pers. comm.) in August 1996. This
version of SCRUM differed significantly from the previous version, a major change being that the
FE scheme used in the vertical had been replaced by a FD scheme similar to that used by the other
models. Because of the goal of finishing up the initial phase of the model comparison study at this
time, it was deemed too late to begin testing a new version of SCRUM. Hence, the discussion of
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SCRUM in this report refers to Version 2.1 that was originally received. Since a fully sorted
version of this model was never obtained, most of the tests that were conducted do not include
results from SCRUM.

Besides the models being tested here, there are, of course, a significant number of other coastal
models in current use. Practical considerations limited the number of models that could be included
in this study, but some particular models of interest will be briefly mentioned.

Curvilinear Hydrodynamics in 3 Dimensions (CH3D) is a coastal, baroclinic model that is
being used by the Coastal Engineering Research Center (CERC) of the U. S. Army Corps of
Engineers (Johnson et al. 1991). This model was initially developed for CERC by Peter Sheng
of the University of Florida, who has been active in coastal and lake modeling since the 1970s.
CERC is a FD model and is similar in formulation to POM. In recent years, CH3D has been
maintained and developed by CERC.

The Tidal, Residual, Intertidal Mudflat, Three-Dimensional Model (TRIM-3D) is a FD coastal
and estuary model developed by Vince Casulli and Ralph Cheng (Casulli and Cheng 1993). A
unique feature of TRIM-3D is that grid cells over land are not included in the model's storage
arrays or calculations. This allows a very large increase in efficiency in simulating coastal and
estuary systems in which a large fraction of the volume encompassed by the domain being inves-
tigated is land. TRIM-3D has been applied to estuary systems in which the ratio of sea points to
land points within the 3-D volume encompassing the estuary system is less than 2% (Casulli and
Cheng 1993). NRL has recently developed a version of POM in which land areas have, in a similar
fashion, been eliminated from the array storage and model calculations (Ko, pers. comm.).

David Dietrich of Mississippi State University has developed a free surface version of his
DieCAST model (Dietrich and Mehra 1998). The original version of DieCAST, which uses a rigid
lid, is able to form and maintain mesoscale circulation features and fronts with relatively low
horizontal resolution (Dietrich et al. 1993; Dietrich and Ko 1994).

Dan Lynch of Dartmouth University, one of the pioneers in the development and application
of barotropic FE ocean models, has developed a baroclinic FE model called QUODDY3 (Lynch and
Werner 1991). This model is currently being applied by Dan Lynch and colleagues to the Maine
Coastal Current (Naimie et al. 1994). FE models are more complex to program than FD models,
but their very flexible horizontal grids allow large changes in spatial resolution over short distances,
which provides significant advantages in modeling coastal regions with complex coastlines and
bathymetry. (NRL has recently acquired and begun working with QUODDY3.)

The models being compared in this study, POM, ECOM-si, SZM, and SCRUM, although
similar in many ways, have some significant differences: (a) explicit versus implicit treatment of
the free surface, (b) sigma versus z-level vertical coordinates, (c) different temporal differencing
schemes, and (d) different vertical mixing submodels. This study will consider how these differences
affect model performance.

The model tests conducted here consist of tests of basic physical processes, including advection,
mixing, propagation of free and coastal-trapped waves, and formation of upwelling and down-
welling fronts. There are several reasons for conducting tests of basic physical processes, rather
than tests of more complex coastal situations and comparisons with observations:

* Coastal models are sometimes applied without good knowledge of how well they simulate
basic physical processes.
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* Knowledge of model performance in simulating basic processes can aid interpretation of
results in realistic situations and help in identifying the cause of model-related problems.

* Model comparisons with real data are not always conclusive because of uncertainties in initial
conditions, boundary conditions, forcing, and validation data.

* Particular simulations with real data may not provide a good test of all the important physical
processes.

* Tests of basic processes can uncover problems with the models that may not be evident in
particular simulations with real data.

It is acknowledged, however, that comparison with observations is the final arbiter of model
skill. There are a number of studies being conducted with coastal ocean models at NRL and at other
institutions where the primary focus is the comparison of model results with observations. We
consider the model tests conducted here to be complimentary to these other studies.

The sections that follow include (2.0) a description of the models, (3.0)-(8.0) a discussion of
the results of the various model comparison test cases, and (9.0) a summary.

2.0 DESCRIPTION OF THE MODELS

The description of the models provided here is not complete in all details. The reader is
referred to the references provided for the models for a more complete description. The emphasis
here is on how the model formulations differ from each other. Hence, rather than sequentially
present a complete description of each model, the different aspects of the models, i.e., the horizontal
and vertical coordinate systems used, the spatial and temporal differencing, the treatment of the free
surface, and the parameterization of horizontal and vertical mixing, are discussed in turn for all
the models. There is some additional discussion of the physics and numerics of the models in the
sections describing the model tests. A listing of some of the main features of the models is
presented in Table 1.

2.1 Basic Equations

All the models have a free surface and employ the hydrostatic, Boussinesq, and incompressible
approximations. The equations that the models solve, written in Cartesian coordinates, are

au ad au-= V (vu) + fv - + -(Mz), (1)
at PO ax az az

av V pa av

t= V vv) - fu - dP+ Fv + d(Km ) , (2)
at PO ay e3z Oz

p = -pg, (3)

au av aw
ax +y dz ' - = (4)
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Table 1 - Comparison of Some of the Features of Models Being Tested in
Comparison Study

Horizontal Grid

Vertical Grid

Barotropic Mode

Horizontal FD

Vertical FD

Horizontal Mixing

Vertical Turbulence

Bottom Friction

Wetting/Drying

POM

C-Grid
Curvilinear

Sigma

Split-Explict
Leapfrog

Second-Order

Second-Order

Laplacian
Smagorinsky

MYL2.5

Quadratic

No

ECOM-si

C-Grid
Curvilinear

Sigma

Implict
Two-Time Level

Second-Order

Second-Order

Laplacian
Smagorinsky

MYL2.5

Quadratic

Yes

SZM

C-Grid
Cartesian

Sigma/z-level

Semi-Explict
Leapfrog

Second-Order

Second-Order

Laplacian
Grid Cell-RE

MYL2

Quadratic
or Linear

No

SCRUM

C-Grid
Curvilinear

S-Coord

Split-Explicit
Leapfrog

Second-Order

Linear FE

Laplacian or
Biharmonic

MYL2
Price PP

Quadratic
or Linear

No

Temporal Scheme for Barotropic Equations

Surface Gradient Centered Fully Implicit Trapezoidal Centered

Transport Gradient Centered Fully Implicit Trapezoidal Centered

Temporal Scheme for Baroclinic Equations

Pressured Gradient Centered Forward Centered Adams-Bashforth

Coriolis Term Centered Forward Centered Adams-Bashforth

Horizontal Advection Centered Forward Centered Adams-Bashforth

Horizontal Mixing Forward Forward Forward Adams-Bashforth

Vertical Advection Centered Forward Centered Crank-Nicolson

Vertical Mixing Fully Implicit Fully Implicit Fully Implicit Crank-Nicolson

ad _ a((Q +H)u) a(( +H)V)
at ax ay 2

aT a aT ay
= -V (vT) + Vh (AHVhT) + d (K t7 ) + Qraz ,

as =-V (vS) + Vh (A A (K as

p = p(T, S, z),

where t is the time, x, y, and z are the three coordinate directions, u, v, and w are the three
components of the vector velocity v, T is the potential temperature, S is the salinity, Vh is the
horizontal gradient operator, f is the Coriolis parameter, p is the pressure, p is the water density,

(5)

(6)

(7)

(8)

A Comparison of Several Coastal Ocean Models 5



PO is a reference density, g is the acceleration of gravity, F, and F, are horizontal mixing terms
for momentum, AH is the horizontal mixing coefficient for scalar fields (temperature and salinity),
KM and KH are vertical eddy coefficients for the momentum and scalar fields, respectively, Qr is
the solar radiation, is a function describing the solar extinction, is the elevation of the free
surface above the undisturbed value at z = 0, H is the bottom depth, and 71 and are the
depth-averaged horizontal velocities.

With the hydrostatic assumption, vertical accelerations are assumed to be small and the vertical
momentum equation (3) is taken to be a balance between the vertical pressure gradient and the
gravitational force. Vertical velocity is computed from the divergence of the horizontal flow field
using the continuity equation (4).

With the Boussinesq approximation, density variations are only taken into account in calculating
the horizontal pressure gradient terms and in calculating vertical stability for the parameterization
of vertical mixing.

All the models use some version of the nonlinear equation of state for seawater to calculate
density (8) from T and S. ECOM-si, SZM, and SCRUM calculate potential density, i.e., the density
at atmospheric pressure. POM calculates the in situ density, which includes the effect of pressure,
to provide more accurate density gradients in deep water. Note that the in situ density must be
corrected for the effect of pressure when calculating vertical stability (which POM does).

2.2 Surface and Bottom Boundary Conditions

Equations (1)-(8) are subject to boundary conditions in the form of fluxes and stresses at the
ocean's surface and bottom. The boundary conditions at the surface, which are due to fluxes
between the ocean and the atmosphere, are

au r
az PO

av -Y

KM- , (10)
az P0

aT Qb+Qe+Qs
KH T = p, (11)

as
KH-g) =SIz=0 (Ev-Pr), (12)

where -x and -rY are the x and y components of the surface wind stress, Qb, Qe, and Qs are the net
long-wave, latent, and sensible surface heat fluxes, E and Pr are the surface evaporation and
precipitation rates, and is the specific heat of seawater. At the ocean bottom, the boundary
conditions are

X
au _ b

Km-az- Po (13)
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Kmav L bKM =ZP 

aT
KH a = 0 ,

as 0,KH 7 = 

(14)

(15)

(16)

where x and lb are the x and y components of the bottom stress. The bottom stress is parameterized
either by a linear drag law

X
Tb = -PoCbu ,

b pocblv,

where cbl is a linear drag coefficient with units of velocity, or a quadratic law

X
Tb Pocb uIVI ,

b =PoCbvIvI ,

(17)

(18)

(19)

(20)

where cb is a dimensionless coefficient.

The models generally use a quadratic bottom drag law with the drag coefficient computed in
terms of the bottom-layer thickness Azb and the bottom roughness z as

cb = max Cbmi. I (21)

where K = 0.4 is von Karman's constant and cb. is a minimum value for cb. This expression for
Cb is derived by combining (19-20) with the equation for a logarithmic boundary layer velocity
profile

)1

U K Po ) kzoJ

where z is the distance above the bottom.

(22)
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2.3 Horizontal Coordinate

POM, ECOM-si, and SCRUM use general orthogonal, curvilinear, horizontal coordinates. SZM
is written to use only Cartesian coordinates and requires the use of a constant horizontal grid
spacing in x and y.

Curvilinear grids allow some flexibility in setting up the horizontal grid in terms of varying the
horizontal resolution in different parts of the model domain and positioning the lateral boundaries,
or alternatively, conforming to a particular map projection. There are, however, some limitations
on the degree to which an orthogonal, curvilinear grid can be curved or the rate at which the grid
resolution can be changed if truncation errors associated with the spatial changes in the grid are to
be kept small (Crowder and Dalton 1971; Rivas 1972).

The implementation of orthogonal curvilinear coordinates in the models is primarily a matter
of accounting for the changing size of the grid cells when computing fluxes between the cells and
when computing the changes within a cell. Hence, the variables for the horizontal size of the grid
cells, Ax and Ay, must be stored as two-dimensional (2-D) arrays rather than as constants. The only
correction to the models' equations for the curvature of the horizontal grid is a correction to the
advection term to account for conversion between u and v momentum for advection along curving
grid coordinates. Note that the horizontal momentum diffusion terms should also, ideally, have a
curvature correction. Since the models do not have such a correction, they implicitly assume that
the diffusion error due to any curvature of the grid is small and can be neglected. None of the
models account for changes in the grid-cell spacing when interpolating variables between
the center and the interfaces of the grid cells, i.e., all the models use simple averages for these
interpolations.

All of the tests in this report were conducted with Cartesian horizontal coordinates with Ax and
Ay both constant. Hence, error that might arise from the particular implementation of curvilinear
horizontal coordinates in the individual models was not addressed.

2.4 Vertical Coordinate

POM and ECOM-si use a sigma () coordinate in the vertical in which the depths of the model
layers are a fixed fraction of the total depth of the water column from the free surface to the bottom.
The sigma vertical coordinate is expressed as

(4 + H) (23)

so that a varies from 0 at the surface to -1 at the bottom. With sigma coordinates, the layers near
the bottom follow the contours of the bottom.

SZM uses sigma coordinates for a user-specified number of upper layers and uses z-levels for
the layers below. SZM can be run with all sigma layers, with sigma layers in shallow water and
z-levels in deep water, or with all z-levels (except for the upper layer, which, because of the free
surface, must be a sigma layer). All the models allow stretching of the vertical grid, i.e., changes
in As or Az with depth, to provide different vertical resolution over different parts of the water
column.
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SCRUM uses what Song and Haidvogel (1994) call an "S" vertical coordinate. This vertical
coordinate allows changing the fractional size of the individual sigma layers (As = Az/( + H)) in
different parts of the domain as the depth of the bottom changes, rather than keeping Aa for a
particular layer constant everywhere, as is the case with the usual implementation of sigma layers
used in POM, ECOM-si, and SZM. For example, a minimum thickness can be specified for
layers near the surface and bottom to avoid the normal vertical spreading of the sigma layers as the
depth of the water increases.

Similar to orthogonal, curvilinear coordinates, the implementation of sigma or "" coordinates
in the models is primarily a matter of accounting for the changing vertical thickness of the layers in
calculating fluxes between adjacent grid cells and in calculating changes within the grid cells. Note
that with sigma coordinates, the changes in the thickness of the grid cells occurs not only horizontally
within a layer, but also from timestep to timestep because of the changing surface elevation. To
avoid having to use a large number of 3-D arrays to store the thickness of the grid cells at different
locations and time levels, the models express the grid thickness Az as the product of the fractional
thickness of the sigma layer Au times the total depth, i.e., as

Az = A ( H) . (24)

The only correction to the equations used in the models for the changing depth of the sigma layers
is a correction for the horizontal pressure gradient. The horizontal pressure gradient in sigma
coordinates contains an extra term to calculate and remove the vertical change in pressure between
neighboring points within a sigma layer so that the net pressure change that is computed will be
approximately along a level surface (Blumberg and Mellor 1987).

A problem with this calculation of the pressure gradient with sigma coordinates is that the
vertical component of the pressure change along a sloping sigma surface is frequently much larger
than the horizontal component (Haney 1991). In this case, the desired horizontal component is
calculated as the small difference between two large terms and is subject to significant truncation
error. An expedient that is employed in the models to reduce this error is to subtract the horizontally
averaged density profile from the 3-D density field when calculating the horizontal pressure gradient
so that the main component of the vertical change in pressure is removed from the calculation.

Strictly speaking, for a full transformation of the equations to sigma coordinates, the horizontal
diffusion terms would also be corrected for the transformation so that they would still repre-
sent diffusion along level surfaces. However, all the models use the approximation discussed by
Mellor and Blumberg (1985) who argued that diffusion along the sigma surfaces rather than along
level surfaces was, in general, more appropriate for sigma coordinate models, particularly for
proper simulation of the bottom boundary layer with sigma coordinates. A practical reason for having
"horizontal" diffusion occur along the sigma surfaces is that the rather messy form of the transformed
horizontal diffusion terms is avoided.

2.5 Spatial Finite Differences

All the models use standard, second-order, centered spatial interpolations and FDs except that
SCRUM uses linear FEs in the vertical. With second-order, centered interpolations and differences,
the value of a variable at a location x is evaluated as the average of the values defined on either
side, i.e.,

A Comparison of Several Coastal Ocean Models 9



OXL 1( + x-Aj (25)

and the gradient of at x is calculated as

11
dx x A(x+!Ax x (26)

where Ax is the grid spacing.

2.6 Temporal Scheme for Baroclinic Equations

The temporal schemes that are used for the 3-D baroclinic equations of the models are discussed
in this section. The temporal schemes are illustrated with just the u momentum equation, since the
treatment of the other model variables is similar. In the following discussion, (n) will denote model
values at the current time level (i.e., values calculated on the previous timestep), (n + 1) will denote
the newly calculated values, and (n - 1) and (n - 2) will denote values at previous time levels. Note
that, for simplicity, the temporal differencing equations that are presented here do not include the
temporal changes in the vertical thickness of the layers on the models' sigma-coordinate grids (and
on SCRUM's S-coordinate grid) caused by changes in the surface elevation (though these changes
are accounted for by the models).

POM and SZM use a standard, leapfrog time-stepping scheme. With this scheme, most of the
terms, i.e., the advection, baroclinic pressure gradient, and Coriolis terms, are centered in time at
(n). The horizontal diffusion terms are calculated at the previous (n - 1) time level (since diffusion
terms evaluated at the central time level of a leapfrog scheme tend to excite time splitting and cause
numerical instability), and the vertical diffusion terms are treated implicitly so as to avoid the
timestep restriction for explicit vertical diffusion (the high rates of vertical diffusion sometimes
calculated by the turbulence submodels would require a very small timestep for stability if the
vertical diffusion were explicit). Hence, the temporal differencing of the u momentum equation can
be represented as

U (n+ u =-)v.()(n)f(n)pa uz 1 ap(n) +F(n-) 8 (K au (nl) (27)

POM and SZM use an Asselin filter to suppress the time splitting that can occur with leapfrog
(Asselin 1972). The Asselin filter is applied at the end of each timestep to the fields at time level
(n) by averaging in a bit of the values at the (n + 1) and (n - 1) time levels, i.e.,

4)(n) = V(4)(n +1) + (n - 1)) + (1 - 2v)4)(n), (28)

where v is the filter coefficient. If (28) is rewritten as

4(n) = (n) + V(4(n +) - 2(n) + (n - 1)) (
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the filter looks like a numerical diffusion term, which is the way that it behaves. A typical value
of v used in POM and SZM is 0.05, and this is the value used in the tests in this report.

ECOM-si uses a two-time-level scheme in which most of the terms in the baroclinic equations
are evaluated at the current (n) time level. This is sometimes referred to as a forward time-differencing
scheme. Vertical diffusion, however, is treated fully implicitly as in POM and SZM. The temporal
differencing of the u momentum equation for ECOM-si can be written as

_________ (n)n- 1 ap(n) (n) a au _____

At )Un=- V(vu)(n)+fv(n) - 1 a +_~--zKM a J (30)

Note that ECOM-si updates the velocities before updating T and S and uses the new velocities to
advect T and S so that in the T and S equations, the advection velocity v is at (n + 1) rather than
at (n) as in the momentum equations.

There are some advantages to the forward scheme: (a) prognostic variables only need to be
saved at a single time level, which saves computer storage, (b) there is no time-splitting problem
that one must deal with as there is when using the leapfrog scheme, and (c) timestep restrictions
are calculated for a timestep At, instead of with 2At, which is the effective timestep for the leapfrog
scheme. The big disadvantage of the forward scheme is that the terms are not centered in time and
can suffer significant temporal truncation error. The magnitude of this truncation error depends on
the ratio of the model timestep to the timescale of the physical process being simulated. The advection
terms for the forward scheme require a certain amount of diffusion to suppress numerical dispersion
and can become very dispersive when Atu2/(2A.) > 1 (Clancy 1981), where A. is the horizontal
diffusion coefficient. This is discussed further in the tests of the advection schemes in Sec. 3.0.

SCRUM calculates the temporal derivatives for the baroclinic equations using the difference
between successive time levels, i.e., the value at (n + 1) minus the value at (n), as does ECOM-si.
However, SCRUM uses a third-order Adams Bashforth (AB3) scheme for the baroclinic pressure
gradient, horizontal advection, and Coriolis terms. This scheme provides third-order temporal accuracy
by using a quadratic extrapolation of the values at the three previous time levels to the value at
(n +.2 ), so that the calculated value is centered with respect to the time derivative. A Crank-Nicolson
scheme is used for vertical advection and vertical diffusion, where half the term is evaluated at
(n + 1) and half at (n). The temporal differencing of the u-momentum equation for SCRUM can be
written as

U(n +1 U (a) au(c) (f~) a)a C
Ata)- = fv(a) 1 a pa) + (a) a ( ac) (31)

At az PO ax ~~~~azk az)

where the superscript (a) refers to the AB3 scheme where

u(a) 2 u(n)_ 16 ufn-1) +5 (n-2) (2
12 12 12 (2

and (c) refers to the Crank-Nicolson scheme where

u(C) = I ((n) + u( + 1))(3
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ECOM-si's forward treatment of the Coriolis term is numerically unstable in that inertial
oscillations grow exponentially with an e-folding timescale of 2(Atf 2). If the timestep used in
ECOM-si is small, say less than about 200 s, which is generally the case for high-resolution coastal
simulations, the timescale for the growth of the inertial oscillations is fairly slow, i.e., more than
10 d. Such a slow growth of inertial motions may be masked by other variability in the model or
cancelled by the natural damping of the inertial motions due to friction and dispersion. For larger
timesteps, however, the growth of the inertial motions can be a significant problem, e.g., for
At = 1200 s, the timescale is 3.6 d at 300 N. For the purpose of conducting this study, which
involved performing some simulations on fairly coarse grids, the Coriolis terms in ECOM-si were
converted to a second-order Adams-Bashforth (AB2) treatment. For the u equation, this is given by

U(n +) u(n) 3 fv(n)_ 1 vv(n -1)+ (34)
At 2 2

The AB2 scheme provides a linear extrapolation of the Coriolis terms to (n + .) so that they are
centered in time with respect to the time derivative. With this treatment of the Coriolis terms, the
amplification of inertial oscillations is neutral, i.e., there is no significant growth or damping.
From the computational point of view, the cost of the AB2 treatment of the Coriolis terms is very
small. This modification to ECOM-si was used for all the tests conducted in this report and no
drawbacks to this change were observed. In several tests, comparison with the original treatment
of the Coriolis terms verified the improvement in stability and accuracy with the AB2 treatment.
Comparison of the AB2 scheme with an AB3 scheme for the Coriolis terms in some of the tests
showed similar results for these two schemes.

2.7 Numerical Treatment of the Free Surface Mode

A limitation of most explicit numerical schemes is that signals cannot propagate more than a
single grid interval in a single timestep, i.e., the timestep is restricted by

AxAt -, (35)

where c is the speed of the signal (for leapfrog schemes, the timestep is effectively 2t so the
restriction is At < Ax/(2c)).

Surface gravity waves travel very quickly, e.g., in water of 100-m depth, the speed of surface
1

gravity waves is (gH)2 = 32 m/s. For a grid spacing of Ax = 1 km, explicit treatment of these waves
in an ocean model requires a timestep of less than 30 s. If the surface gravity waves are excluded,
the timestep is limited by the propagation of internal waves and advection velocities. Since these
speeds are generally less than about 2 m/s, the timestep limitation for internal wave propagation and
advection for the same 1-km grid would be about 500 s (250 s for a leapfrog scheme).

The timestep restriction for explicit treatment of the surface waves ranges from 10 to more
than 50 times smaller than the timestep restriction for the other processes in the model, depending
on the water depth, the maximum internal wave speed, and the maximum current velocities. Hence,
the speed of surface gravity waves will severely limit the timestep of an ocean model unless a
special numerical treatment is applied to these waves.



The models here use two approaches to avoid the timestep restriction of surface gravity waves.
POM and SCRUM use the so-called "split-explicit" scheme, wherein the terms governing the
propagation of the surface gravity waves are treated explicitly, but with a much smaller timestep
than the rest of the model (Blumberg and Mellor 1987; Song and Haidvogel 1994; Killworth et al.
1991; Mellor 1996). With the split-explicit scheme, the 3-D momentum and continuity equations
are vertically averaged to obtain the barotropic, 2-D momentum and continuity equations that
govern the propagation of the surface gravity waves. The vertically averaged equations are solved
explicitly with a sufficiently small timestep to avoid violating the timestep restriction for the
surface gravity waves. After the new surface elevation and depth-averaged velocities have been
solved by taking a number of small timesteps, the 3-D equations are solved with a much larger
timestep governed by the timestep restriction for internal waves and/or advection. POM and SCRUM
use leapfrog time differencing for the barotropic mode. POM uses an Asselin temporal filter to
suppress time splitting of the barotropic equations and SCRUM uses a trapezoidal correction.

ECOM-si and SZM avoid the timestep restriction of the surface gravity waves by treating the
primary terms governing the propagation of these waves implicitly. These are the surface pressure
gradient terms in the momentum equations and the transport gradient terms in the depth-averaged
continuity equation. In ECOM-si, these terms are treated fully implicitly, i.e., fully at the new time
level. In SZM, the temporal weighting of these terms can be set by the user. For the tests conducted
in this report, an equal weighting of these terms at the old (n - 1) and new (n + 1) time levels was
used.

A disadvantage of the implicit scheme with respect to the split-explicit scheme for the surface
gravity waves is that the implicit scheme has much less temporal accuracy since it is using a much
larger timestep. The loss of accuracy is most severe at smaller wavelengths. An advantage of the
implicit scheme is that it tends to be more computationally efficient, especially if part of the model
domain is very deep, so that the timestep for the explicit treatment of the surface waves must be
very small. Another advantage of the implicit scheme over the split-explicit scheme is that it is
simpler to implement. The split-explicit scheme must be implemented carefully to eliminate incon-
sistencies between the depth-averaged equations and the rest of the model. Potential problems are
discussed by Killworth et al. (1991), Dukowicz and Smith (1994), and Mellor (1996).

2.8 Parameterization of Advection

POM, ECOM-si, and SZM use the flux form of the advection terms, as written in (1), (2), (6),
and (7). SCRUM uses the advective form in which the advection term for, e.g., temperature, is
written as v VT rather than V (vT).

An advantage of implementing the advection terms in flux form is that the advected field can
be conserved. However, to ensure strict conservation, it is essential that the numerical form of the
time derivative and the advection terms for the field being advected be consistent with the numerical
form of the continuity equation. A simple way to check for this in the models is to set the advected
field to a constant. Then the time derivative and advection terms for the advected field must cancel
numerically or there will be spurious sources and sinks of the advected field that will occur at grid
cells in which the net advective volume flux into a grid cell and the change in volume of the
grid cell do not match.

POM, ECOM-si, and SZM go to some trouble to ensure that the advection terms for T and S
are consistent with the numerical form of the continuity equation. However, this is not quite the
case for advection of momentum. To have fully conservative momentum advection would require
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an iterative procedure, since the momentum advection terms are needed to calculate the new
surface elevation and the new surface elevation is needed to calculate the momentum advection
terms in a completely conservative manner. (Another smaller source of error in calculating momentum
advection is that, with a curvilinear grid and grid-cell thicknesses that change with time, interpolation
of nondivergent advective volume fluxes to the staggered momentum grid cells on a C grid will
not result in exact nondivergence at the momentum grid cells.) SZM provides for such an iteration.
However, use of this option, which adds considerably to the model's run time, does not generally
have a significant effect on the model results. This provides some validation of the assumption
made in these models that strict conservation of momentum is generally less critical to model
accuracy than conservation of scalar fields because of the less dominant role of advection in the
momentum equations.

With the advective form of the model equations used by SCRUM, strict numerical conservation
of the advection field is not required to avoid spurious numerical effects. The disadvantage of the
advective form is that the field being advected is not strictly conserved. Note that the strict
conservation of scalar fields is desirable, but tends to be more of a concern for long time integrations
than the typical short simulations usually conducted in coastal modeling, and also more of a
concern for large ocean regions than for coastal areas where sources, sinks, and flows through open
boundaries play a larger role. Of course, errors due to nonconservation of advected fields must
remain sufficiently small so as not to significantly affect results.

2.9 Parameterization of Horizontal Mixing

POM, ECOM-si, and SZM use Laplacian horizontal mixing. POM and ECOM-si use the
Smagorinsky (1963) parameterization in which the horizontal friction terms are written as

a ax~ a(ay aF. dI2 u) d( (u d) (36)a(av) ( (Ž )'JFv =a2AM a)+-a M aua (37)
ay ay ax ay ax

For the Smagorinsky mixing scheme, the horizontal mixing coefficient AM is calculated as a
function of the local horizontal grid resolution and velocity shear, i.e.,

(au'2 12a 2'\

AM=Cs AX AY au +j7vJ+ au + av) . (38)

The magnitude of the Smagorinsky eddy coefficients is scaled by the constant Cs (called HORCON
in the POM and ECOM-si model programs). Values used for Cs range from about 0.01 to 0.5.
Large values of Cs tend to dissipate small features, whereas values that are too small can lead to
numerical noise and/or instability. Typically, a value near 0.1 is used, and 0.1 is the value used
for the tests conducted in this report.
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The horizontal friction terms in SZM use the form

Fu a (M a + a ay) (39)ax ax ay M a

af av~ a ( av (0
v x( A axJ ay (AMay)* (40)

The horizontal mixing coefficient AM in SZM is set equal to the maximum of a constant background
value AO and a value needed to keep the grid-cell Reynolds Number Re below a maximum
specified value, i.e.,

AM=max(A uAx (41)
0' Reg

The value of Re is typically set to a value of 30-100 in the horizontal. Values in this range
generally provide a good compromise between allowing natural dynamic instability processes to
develop and keeping numerical noise to acceptable levels. In most of the tests conducted here, Re
is set to a value of 100 and A = a0 Ax, where AO = 0.1 cm/s.

The form used for horizontal diffusion of T and S in POM, ECOM-si, and SZM is the Laplacian
form expressed in (39) and (40). The models provide for allowing AH to be some fraction of AM,
but are frequently run with AH = AM. AH and AM were set equal in the tests conducted here.

In regions where there are large changes in the bottom depth, the horizontal diffusion along
sloping sigma layers can cause severe cross-isopycnal diffusion (Paul 1994). An expedient that is
sometimes used with sigma coordinate models, which is employed in the models tested here, is to
subtract a smooth, background field from the T or S fields when calculating horizontal diffusion.
By calculating the horizontal diffusion based on the anomaly from a smooth background field, most
of the component of vertical diffusion that occurs when diffusion is calculated along sloping sigma
layers is eliminated. In the tests conducted here, the background T and S fields are calculated as
the horizontally averaged T and S profiles. This is a commonly used procedure. An alternative
strategy is to use smooth but horizontally varying background fields to accommodate changes in the
structure of the T and S fields in different parts of the model domain. The background fields can
also be periodically updated to accommodate changes in T and S that occur in time. We note that
the use of these procedures can significantly reduce the problem of severe cross-isopycnal diffusion;
however, they can introduce other problems, one example of which will be discussed in the
upwelling/downwelling test in Sec. 8.0.

SCRUM offers both Laplacian horizontal friction (with constant values of AM and AH) and
high-order, biharmonic friction in the horizontal. Biharmonic friction is more effective in removing
small-scale noise than Laplacian friction, but is not strictly conservative.

2.10 Parameterization of Vertical Mixing

POM and ECOM-si use the MYL2.5 turbulence model to parameterize vertical mixing (Mellor
and Yamada 1982; Blumberg and Mellor 1987). This turbulence model requires the prognostic
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calculation of two turbulence quantities, q, which is twice the turbulent kinetic energy (TKE), and
q2f, where is the turbulent length scale.

SZM uses the MYL2 turbulence model (Mellor and Yamada 1974; Mellor and Durbin 1975).
The MYL2 turbulence model assumes a local balance between shear production, buoyancy production,
and dissipation of TKE, and does not require prognostic prediction of any turbulence quantities.
This saves computer time and memory relative to using the MYL2.5 model; however, the simplified
TKE equation does not account for storage and transport of TKE. The turbulence length scale for
SZM is calculated diagnostically based on the distance from the top (zt) and bottom (b) of a
turbulent boundary layer, i.e.,

=K + Z i) (42)

where K = 0.4 is von Karman's constant. The simplification of the MYL2 scheme relative to the
MYL2.5 scheme may have some disadvantages in terms of accuracy and robustness. Tests will be
conducted to determine how the implementations of the MYL2 and MYL2.5 schemes in the models
compare for some basic mixing situations.

2.11 Position of Variables on the Model Grid

The horizontal positioning of the main variables with respect to the grid cells is the same for
all the models. They all use an Arakawa C grid in which the horizontal velocities are defined at
the edges of the grid cells, and the other variables (T, S, p, p, w, t) are defined at the center of the
grid cells (Fig. 1).

Looking at the vertical location of the variables for POM, ECOM-si, and SZM, all the main
variables are defined at the center of a layer except for w, which is defined at the interface between
the layers (Fig. 2a). For SCRUM, which uses a FE scheme in the vertical, all the main variables
are defined at the layer interfaces (Fig. 2b). For POM and ECOM-si, the turbulence variables q2

and q are defined at the w locations.

v

CPw

U TSp U

v

Fig. 1 -Horizontal arrangement of primary model variables on
the numerical grid for all the models
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Fig. 2-Vertical arrangement of primary model variables on the numerical grid for (a) POM,
ECOM-si, and SZM and (b) SCRUM

The horizontal eddy coefficients for POM and ECOM-si are defined at the grid-cell centers.
For SZM, separate horizontal eddy coefficients are calculated for diffusion in the x and y directions,
and these are defined at the u and v locations, respectively. The vertical eddy coefficients for POM,
ECOM-si, and SZM are defined at the w locations; however, for SCRUM they are defined at the
center of the grid cells.

2.12 Setting Up the Models for Testing

POM, as obtained from Princeton University, was set up for a closed domain, and the do-loop
limits used in the model were unsuitable for use with open boundaries. Hence, before beginning
testing of POM, all the do-loops in the model were checked, and if necessary, modified to allow
the use of open boundaries on all sides (note that the do-loop limits needed for open boundaries
are not incompatible with the use of either closed or periodic boundaries).

This problem of the do-loop limits has been noted by many users of POM. In 1996, the version
of POM available from Princeton was replaced with a new version in which the do-loop limits are
reported to have been modified to more easily allow the use of open boundaries (this new version
of POM has not yet been compared with our own modifications).

ECOM-si came with a fairly well-developed user interface that allows setting up a model run
for a particular simulation by placing all the input parameters and data required for the run in two
input data files. An advantage of this setup is that few (if any) changes need to be made to the
model code to run a particular simulation. However, this setup proved to be cumbersome for
the tests conducted here, and was replaced with a set of subroutines to define the model setup,
initialization, and forcing.

The ability to use periodic lateral boundary conditions in both x and y was added to both POM
and ECOM-si (this feature was already available for SZM and SCRUM). Periodic boundaries are
not needed for simulations of actual coastal regions, but are very useful for testing purposes. Many
of the tests conducted for this model comparison study used periodic boundaries in one or both
directions.

As discussed in the introduction, there were a number of problems found with the Version 2.1
SCRUM code that was obtained from Rutgers. The Crank-Nicolson treatment of vertical mixing
tended to produce noisy, inaccurate vertical mixing, and some terms were missing from the forcing
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for the free surface mode. These problems were generally due to the fact that SCRUM was still
undergoing changes. As previously stated, because of these problems and extensive changes that
were made to SCRUM in the more recent version of the model that has been made available
(Version 3.0), SCRUM was not included in most of the model tests.

3.0 TEST OF HORIZONTAL ADVECTION
3.1 Rotating Cone Advection Test

The performance of the horizontal advection schemes used in the models was investigated by
performing the classic "rotating cone" advection experiment (Crowley 1968; Molenkamp 1968;
Orszag 1971; Anderson and Gattahi 1974; Purnell 1976; Shannon 1979; Long and Pepper 1981;
McRae et al. 1982; Smolarkiweicz and Grabowski 1990; Cantekin and Westerink 1990). In this
experiment, a cone- or Gaussian-shaped feature is advected in a circular path by an advection field
representing solid body rotation about the center of the domain. A perfect advection scheme would
advect the feature in a circular path at the proper speed without changing its shape. The performance
of the advection scheme is judged by the distortion of the shape of the feature after a certain period
of advection and by errors in its position.

Figure 3a shows the model domain and the initial condition for this experiment. The model
domain consists of a square region 40 km on a side. The grid spacing within the domain is a
uniform 1 km. The initial feature, which is taken to be in the shape of a cone, is located 10 km
south of the center of the model domain and has a radius at its base of 4 km (4 gridpoints) and
a maximum amplitude of 50 units. The field being advected could be considered to be temperature,
salinity, or some other constituent of the model. The advection field consists of solid body rotation
about the center of the model domain with a period of rotation of 1.6 d. With this rotation period,
the advection velocity at the location of the center of the cone is 45.4 cm/s.

Note that the advection tests were conducted with the numerical schemes used for advection
in the models, but not with the models themselves. This was the only test in this report that was
conducted in this manner. The advection test was conducted this way because it was simpler to do
so than to set up this test with the models.

These advection experiments included a certain amount of explicit diffusion. This was
necessary since some diffusion is needed to filter the numerical noise generated by the advection
schemes. For the advection experiments, the diffusion terms were parameterized using standard,
second-order, flux-conserving, Laplacian diffusion with a constant diffusion coefficient.

As discussed in the previous section, POM, ECOM-si, and SZM use the same second-order,
centered, spatial finite difference scheme for the horizontal advection terms. With this scheme, the
field being advected is interpolated from the grid-cell centers to the grid-cell boundaries using
two-point averages, and the flux through the boundaries of the cell is computed by multiplying the
value of the field at the grid-cell boundary by the normal velocity at the boundary. The change in
the field due to advection is then calculated as the sum of the fluxes into and out of each of the
grid cells. This scheme is conservative, since the flux leaving a cell is equal to the flux entering
an adjoining cell though the common face.

SCRUM uses the advective form of the advection term in which the gradient of the field
being advected is calculated at the grid-cell center using a two-point difference and is multiplied
by the advection velocity averaged to the grid-cell center using a two-point average (since the advection
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Fig. 3 - Results of rotating cone advection test after one revolution (1.6 d) for (b) leapfrog scheme used by
POM and SZM, (c) AB3 scheme used by SCRUM, and (d) forward temporal scheme used by ECOM-si. The
initial position and shape of the cone are shown in (a). The initial height of the cone is 50 units. The timestep
was 360 s for the leapfrog and AB3 schemes and 180 s for the forward scheme. The horizontal viscosity was
a constant 10 m 2/s. The gridpoint locations are denoted by the tick marks, and Ax = 1 km.

field is constant in time and varies gradually in space, the flux and advective forms of the
advection term gave very similar results in this test).

The differences in the behavior of the advection schemes used by these models in this test are
due mainly to the differences in the temporal differencing schemes. As discussed in Sec. 2.6, POM
and SZM use a leapfrog temporal scheme in which the advection terms are calculated at the central
time level, i.e, for the advection of the variable T, and ignoring other terms, we have

T(n+1) = T(n- 1) + 2tC(n))43

19

- - -- - - - - - - - 1 - -, . I, I I l ., I . . . . I . . . .

(a) Od, min =O
max = 50

,, I I I I . . . I . . I . . ,, 

a I fI I . . . I . . i . I . . . I

(b) 1.6 d, min =-5.1
max = 18.8

, I

-1 -- 1

' I/I,
II

I I I I I I I I I I I I 

20

10

0

-10

-20

20

10

0

-10

-20 
-21 -10

I I I , ,

0 10 20 -20

X .f . . . . . . . . . . -

- - - - -

0



where C(n) denotes the advection term. The temporal accuracy of leapfrog advection is second
order, i.e., the temporal truncation errors are proportional to (At)2 .

ECOM-si uses the two-time-level, forward temporal scheme in which the advection terms are
evaluated at (n), i.e.,

T(n + 1) = T(n) + AtC(n) (4

The temporal accuracy of the forward scheme is only first order because the advection terms are
not centered in time.

SCRUM updates the baroclinic fields from the values at (n) using the AB3 scheme

T(n + 1) = T(n) + At((23C(n) - 16C(n- 1) + 5C(n- 2))I12), (45)

for which the truncation error is proportional to (At)3 .

The standard timestep for the advection experiments was taken to be At = 360 s and the
horizontal diffusivity AH was set to a constant 10 m2/s. A requirement for numerical stability of
an explicit advection scheme is that

At
Cu = u < 1, (46)

Ax

where CU is the Courant Number. A similar stability requirement for explicit diffusion is given by
the diffusion number d (Roache 1976).

d =2A At I (47)
A x2 <

For the leapfrog scheme, the value of At in (46) and (47) should be replaced by 2At, since the
timestep is effectively 2At.

Also, as mentioned in Sec. 2.0, it is frequently desirable for the grid-cell Reynolds Number
(Reg = uAxIAH), which is the ratio of the relative strengths of the advection and diffusion terms,
to be in the range of 30-100 so that the natural physical instabilities of the flow on the smallest
spatial scales resolvable by the model are not damped by the diffusion terms.

For the temporal differencing schemes used by ECOM-si and SCRUM, and for our standard
parameter values (At = 360 s, Ax = 1 km, and AH = 10 m2/s), Cu = 0.16, d = 0.0072, and Reg = 45
at the location of the center of the cone where u = 45.4 cm/s. In the corners of the model grid
where u = 128.5 cm/s, CU = 0.46 and Reg = 127. For the leapfrog scheme used by POM and SZM,
the timestep is effectively 2 x 360 s in (46) and (47) so that values of Cu are twice as large, i.e., 0.33 at
the location of the center of the cone and 0.93 in the corners. Hence, the schemes satisfy the stability
constraints described by (46) and (47) over the entire grid for the standard parameter values.

For the forward advection scheme used by ECOM-si, there is another constraint (Clancy
1981), which is

20 Martin, Peggion, and Yip



A Comparison of Several Coastal Ocean Models 21

Atu2

<2 . (48)

Failure to comply with this restriction results in severe numerical dispersion and possible instability.
Note that for the standard parameters values, Atu2/AH = 7.3, i.e., (48) is not satisfied. Equation (48)
could be satisfied by reducing the ratio AtIAH by a factor of about 4.

Figure 3 shows the initial shape of the cone and the results for the advection of the cone after
one complete revolution (1.6 d) for each of the three advection schemes: the leapfrog advection
scheme used by POM and SZM, the AB3 scheme used by SCRUM, and the forward scheme used
by ECOM-si. Results from all the advection experiments are also summarized in Table 2. The
forward advection scheme was unstable with At = 360 s and AH- 10 m2/s, So the timestep was
reduced by half, i.e., the results for the forward scheme in Fig. 3 are for At = 180 s.

The results for the leapfrog and AB3 schemes in Fig. 3 are about the same. The peak of the
cone is reduced from 50 to 19 units due to a combination of dispersion caused by the numerical
scheme (i.e., failure of the scheme to advect the field at the true advection velocity), and actual
diffusion by the diffusion term (the diffusion term alone would have reduced the peak from 50 to
25 units in 1.6 d). Numerical dispersion creates a wake behind the cone that has a maximum value
of -5 units in the first wave behind the cone. Dispersion is also responsible for the fact that the
peak of the cone does not quite get back to its initial position, but falls short by about 3 km.

Figure 4 shows results for the leapfrog and AB3 schemes for the same experiment, but with
AH reduced from 10 to 5 m2/s. This decrease in AH gives Reg = 90 at the location of the cone. The
leapfrog and AB3 schemes again give similar results. With the reduced diffusivity, the maximum

Table 2 -Results from Cone Experiment with Advection Schemes
Used by Ocean Models

MAX MAX
AMPLITUDE AMPLITUDE PHASE

t DIFFUSIVITY WITHIN WITHIN ERROR
SCHEME (s) (m2 s) CONE WAKE (km)

Leapfrog 360 10 19 -5 3

Leapfrog 360 5 22 -8 3

Leapfrog 90 5 22 -8 3

AB3 360 10 19 -5 3

AB3 360 5 22 -7 3

AB3 90 5 22 -8 3

Forward 180 10 24 -13 3

Forward 90 10 21 -8 3

Forward 45 10 20 -6 3

Forward 30 10 19 -6 3

Forward 20 10 19 -6 3

Forward 180 20 18 -7 3
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Fig. 4 -Results of rotating cone advection test after one revolution (1.6 d) for (a) leapfrog and (b) AB3
schemes with a constant horizontal viscosity of 5 m2/s

amplitude within the cone is increased from 19 to 22 units, but the amplitude of the wake, caused
by numerical dispersion, is also increased. Reducing the timestep with these two schemes did not
significantly affect the results (Table 2), i.e., the error is primarily due to spatial, rather than
temporal, truncation error.

The forward-in-time advection scheme is well known to be highly dispersive (Roache 1976)
and the results with this scheme in Fig. 3 show much greater dispersion than with the leapfrog and
AB3 schemes, in spite of the fact that a smaller timestep is used. The maximum value in the wake
behind the cone after one revolution is -13 units, compared with -5 units for the leapfrog and AB3
schemes.

Figure 5a-c shows results for the forward scheme with timesteps of 90, 45, and 20 s (with
AH = 10 m2/s). The values of Cu at the center of the cone for these experiments are 0.04, 0.02, and
0.01, i.e., well below the value of 1.0 required for stability with the leapfrog and AB3 schemes.
Because of the large temporal truncation error of the forward scheme, the dispersion is significantly
reduced as the timestep is reduced. The results with At = 45 s are similar to the results with the
other two schemes. Further reduction of the timestep below 20 s does not improve the results,
indicating that the remaining error is primarily due to spatial truncation error.

Increasing the diffusivity can also reduce the dispersion of the forward advection scheme.
Figure d shows a result with At = 180 s as was used for the result in Fig. 3d, but with AH
increased to from 10 to 20 m2/s. Note that with this larger value of AH, the forward scheme
satisfies the criteria expressed in (48). Figure 5d illustrates that increasing the diffusivity can reduce
the numerical dispersion, though at the cost of increasing the diffusiveness of the numerical scheme.

In summary, the advection schemes used by POM, SZM, and SCRUM give similar results in
these tests. The numerical dispersion of these schemes is certainly significant. However, based on
the wide use of these advection schemes in ocean modeling, this degree of dispersion has been
deemed to be tolerable (in recent years, ocean modelers have been increasingly investigating the
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Fig. 5 - Results of rotating cone advection test after one revolution (1.6 d) with forward temporal
scheme for different timestep and viscosity values

use of alternative advection schemes (Hecht et al. 1995)). The error of the advection schemes used
in POM, SZM, and SCRUM is mostly due to spatial truncation error and the results are not very
sensitive to the timestep as long as the timestep is small enough to keep CQ below the value
required for numerical stability.

The forward advection scheme used by ECOM-si is well known to be highly dispersive.
Unlike the leapfrog and AB3 schemes, the forward scheme is very sensitive to the timestep because
of the significant temporal truncation error. As C,, is increased above a value of about 0.04, the
dispersion of the forward scheme increases markedly. This dispersion can be reduced and numerical
stability maintained by increasing the diffusivity or viscosity so that Atu 2/AH remains below a
value of about two. However, as the value of CU increases above about 0.04, the values of AH
required to satisfy this criteria will result in increasingly diffusive flows.
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3.2 Advective Overshoot with Second-Order, Centered Advection Scheme

The second-order, centered advection scheme used in all the models being compared here is
subject to an error sometimes referred to as "advective overshoot," when spatial changes in the
field being advected are not adequately resolved. Figure 6 shows the results of the uniform advection
of a field in which there is a sharp change (i.e., a sharp front) occurring between gridpoints. The
field being advected could be any model variable. In this case, the advected variable is taken to
be temperature.

In the case shown in Fig. 6, the grid spacing is 1 km, the timestep is 200 s, and the advection
velocity is a constant 10 cm/s in a direction from right to left. The value of the horizontal diffusivity
has been taken be to a constant 1 m2/s to give a grid-cell Reynolds number of 100. The dashed
line in the figure shows the initial value of the advected field and the solid line shows the field
after 70 timesteps. In Fig. 6a, it can be seen that the value at the gridpoint on the upstream side
of the front has decreased by about 7C after 70 timesteps.

The reason for the temperature drop on the upstream side of the front is illustrated in Fig. 7.
With the second-order, centered advection scheme, the value of the field advected through the face
of a grid cell is the mean value of the field in the adjoining grid cells. Hence, the value of the
temperature being advected out of the cold grid cell on the upstream side of the front in Fig. 7 is
higher than the value being advected in on the other side, and the value within the grid-cell drops.
For a jump in the advected field that occurs completely between two grid cells, the maximum drop
at the upstream grid cell is about 1/3 the value of the initial jump. The size of this drop is not
significantly affected by the timestep or the magnitude of the velocity. Nor is the size of the drop
much affected by the horizontal diffusivity, as long as the diffusivity is sufficiently small that the
grid-cell Reynolds number is fairly high (which is generally the case in these models to avoid
excessive diffusion), e.g., if the horizontal diffusivity is increased by a factor of 10 to reduce the
grid-cell Reynolds number to 10 (a fairly small value for an ocean model), the drop in the tem-
perature at the gridpoint upstream of the front is still about 50 C. The results of several experiments
in which the values of the parameters in this experiment were varied are summarized in Table 3.
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Fig. 7- Schematic showing advection between grid cells at the location of a
sharp front. The temperature flux at the interface between the grid cells is calculated
based on the mean temperature of the adjoining cells. The temperature at the cold
grid cell on the upwind side of the front drops because the advective flux leaving
the cell is much warmer than the advective flux entering the cell.

Table 3 - Results of Experiments Conducted to Investigate Advective Overshoot at
a Front with a Second-Order, Centered Advection Scheme. The Initial (20'C) Change
in the Temperature Field Occurs Completely Between Two Grid Cells. The Temperature
Drop Reported in the Table is the Maximum Temperature Drop that Occurs at the
Cold Grid Cell on the Upstream Side of the Front.

The magnitude of the advective overshoot can be reduced by increasing the resolution of the
front. Figure 6b shows the result of resolving the initial front by four gridpoints instead of two.
The magnitude of the overshoot is reduced from 7.2 to 1.7 0C.

Sharp temperature or salinity fronts between adjacent gridpoints can occur in model simulations
with sigma coordinates when there is a sudden change in depth such that horizontally adjacent
gridpoints in the bottom layers lie on different sides of a strong thermocline or halocline. Such a
situation is illustrated in Fig. 8. In this case, in the bottom layer of the model, a grid cell in shallow
water on the shelf is adjacent to a grid cell in much deeper water off the shelf at which the temperature
is 20'C colder. If there is advection from the cold grid cell to the warm cell, the temperature within
the cold cell will drop as illustrated in Fig. 6a. Such a situation occurred in simulations of the Gulf
of Mexico circulation with POM and SZM (Martin 1998). The resulting advective overshoot caused
the bottom-layer temperature in the area of the steep continental slope south of Cuba to become
negative and the model simulations became unstable. The solution in these cases is to increase the
horizontal resolution of steep bottom slopes, either by increasing the horizontal grid resolution or
by reducing the slope itself, so that gradients in the model fields are better resolved. Note that this
particular problem does not occur with z-level vertical coordinates, since the gradient between the
near surface and deep water will be resolved by several vertical levels.

GRID MAX
SPACING TIMESTEP VELOCITY DIFFUSIVITY TEMPERATURE

(km) (s) (cm/s) (m2/s) CELL RE DROP (C)

1 200 100 10.0 100 7.2

1 200 10 1.0 100 7.2

1 200 1 0.1 100 7.2

1 200 10 10.0 10 4.9

1 20 10 1.0 100 7.2
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200C

Fig. 8- Schematic illustrating the large change in temperature
that can occur between adjoining grid cells in the bottom
layers of a sigma coordinate model if there is a large change

50C in depth between the cells such that the cells lie on different
sides of a strong thermocline

4.0 TESTS OF VERTICAL MIXING

Tests of vertical mixing were conducted to look at mixing within the surface and bottom
mixed layers. In addition, an experiment involving the formation of a tidal mixing front was
performed to investigate a situation where the surface and bottom mixed layers combine to mix the
entire water column from top to bottom.

The POM, ECOM-si, and SZM models use a fully implicit scheme for vertical mixing. With
this scheme, the vertical diffusion terms are evaluated using the newly calculated values of the field
being mixed. For example, for the two-time-level scheme used by ECOM-si, fully implicit mixing
of temperature would be written as

T(n+1) = T(n) + A&t(+ (KHaT (n + 1)
z. (49)

Since the new (n + 1) values of the field are not known at the beginning of a timestep, the implicit
treatment of vertical diffusion couples the numerical equations in the vertical, which requires the
solution of a tridiagonal set of equations at each horizontal point.

Although the fully implicit diffusion scheme suffers a loss of accuracy from temporal truncation
error because it is not centered in time, it has the very desirable property for the treatment of
vertical diffusion that it is always numerically stable and physically well-behaved. As a practical
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matter, these latter properties have generally been considered to be more important for vertical
diffusive processes in numerical ocean models than strict temporal accuracy. The implicit treatment
of the vertical diffusion terms should be reasonably accurate when the diffusivities are small and
the timescale of the mixing is long, and when the diffusivities become large, it could be argued
that the precise values of the diffusive fluxes are not very well known anyway.

The version of SCRUM we received used the Crank-Nicolson temporal numerical scheme for
vertical diffusion. With the Crank-Nicolson scheme, the vertical diffusion terms are calculated with
the values of the field being diffused averaged between the (n) and (n + 1) time levels, i.e.,

a lT n+T(n+') /2) l
T (n +) = T(n) +Adt az l H (50)

The Crank-Nicolson scheme is centered in time, which would appear to be an advantage over the
fully implicit scheme that is not centered. However, although the Crank-Nicolson diffusion scheme
is, like the fully implicit scheme, unconditionally numerically stable, it has the undesirable property
that the gradient of the field being advected can be reversed if the eddy coefficients K are sufficiently
large. This gradient reversal is caused by "overshoot" of the diffusive fluxes that can occur if the
vertical diffusion number does not satisfy the constraint

2A tK
A 2 < 1.0, (51)Aiz2

where Az is the vertical grid spacing. With realistic surface atmospheric forcing, the K values can
become very large and (51) can be easily violated. The resulting vertical mixing tends to be noisy
and inaccurate. This is the reason most models use fully implicit vertical mixing. With fully implicit
mixing, the diffusive flux is calculated only from the new values of the field being diffused, and
diffusive overshoots cannot occur.

Vertical mixing tests conducted with SCRUM did indeed produce noisy; and erratic results.
This behavior was eliminated as the timestep was reduced to the point where the restriction defined
by (51) was approximately obeyed. We note that the newer version of SCRUM, Version 3.0, has
been converted to use fully implicit vertical mixing, as is used by the other models.

4.1 Surface Mixing

Some simple tests of surface-mixed-layer deepening were conducted to determine the amount
of surface mixing provided by the models. The tests follow the idealized mixing experiments
conducted by Martin (1985, 1986). One set of tests consists of the erosion of stable thermal
stratification by a constant wind stress with zero surface buoyancy flux. Another set of tests con-
sists of the shallowing of an initially deep mixed layer due to steady surface heating and a constant
wind stress. A third set of tests looks at convective deepening due to surface cooling.

Since the surface mixing tests consider only local mixing, the setup of the model region is not
especially critical as long as non-local effects (i.e., horizontal variations) in the central part of the
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domain remain small during the period of model integration. However, since the models have been
configured to allow the use of periodic boundaries in both the x and y directions, the models can
be set up to behave exactly as a local, one-dimensional (1-D) model in which the horizontal
variations are identically zero.

For the surface mixing tests, the models were set up with a 4 x 4 grid of horizontal points
(6 x 6 for ECOM-si), with periodic boundaries in both horizontal directions. This setup gives a
2 x 2 horizontal grid of interior model points, which is the minimum number of horizontal points
that the models can be run with without significant code modification. With periodic lateral boundaries
in both directions and with horizontally uniform initial conditions and surface forcing, the ocean
models behave exactly like local, 1-D, mixed-layer models.

A constant-spaced vertical grid was used with fairly high 1-m resolution to resolve the mixing
accurately. The latitude of the model region was taken to be 29.91° N where the inertial period is
24 h (i.e., f = 2ri/(24 h)). The internal timestep Ati was taken to be 600 s. The background viscosity
and diffusivity below the mixed layer were set to 0.1 cm2/s for all the models.

For the wind-deepening experiment, the initial temperature was defined as T(z) = 24 - 0.05 z,
where the depth z is in meters and the salinity was set to a constant 35 psu. Three experiments were
conducted with constant wind stress values of 1, 4, and 16 dynes/cm 2 . The surface-mixed-layer
depths (SMLD) after 1, 2, and 5 d are listed in Table 4 and hourly values of SMLD are plotted in

Table 4- Depth of Surface Mixing for Deepening of the Surface
Mixed Layer Due to a Constant Wind Stress and for the Shallowing of
the Mixed Layer Due to a Constant (1 dyne/cm 2) Wind Stress and
a Constant Surface Heat Flux. Two MLDs are Listed: the First is
the Depth Where T is 0.20C Less Than the SST, and the Second is the
Depth Where the Vertical Diffusivity Drops Below 1 cm2/s.

Wind Stress= 1 4 16 1 1 1 dynes/cm 2

Heat Flux = 0 0 0 600 1200 2400 ly/d

Model Mixed-Layer Depth (m) After 24 h

POM 16/15 31/31 57/61 12/15 5/11 2/7
ECOM 16/15 30/31 55158 10/11 4/9 2/6
SZM 17/16 32/32 60/65 10/12 5/10 2/7

Model Mixed-Layer Depth (m) After 48 h

POM 18/17 35/35 67/71 12/14 5/10 2/6
ECOM 18/17 35/35 65/69 11/12 4/9 2/5
SZM 19/18 36/36 69/73 12/13 4/9 2/7

Model Mixed-Layer Depth (m) After 120 h

POM 21/20 41/41 81/83 11/13 4/9 2/5
ECOM 21/20 41/41 81/83 11/11 4/9 2/5
SZM 21/21 43/43 83/83 11/12 4/8 2/5
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Fig. 9. Two different SMLDs are listed in Table 4. The first is the depth at which the temperature
is 0.20 C less than the sea surface temperature (SST) (this is also the definition of the SMLD plotted
in Fig. 9). The second is the depth at which the vertical diffusivity in the surface mixed layer
(SML) decreases to less than 1.0 cm2/s. For the wind-deepening experiments, these two depths tend
to be quite similar.

For the shallowing experiment, the initial temperature and salinity were taken to be a constant
19'C and 35 psu, respectively, and the wind stress was taken to be a constant 1 dyne/cm2 . Three
experiments were conducted with surface heat fluxes of 600, 1200, and 2400 ly/d. No penetration
of the surface heat flux below the ocean surface (i.e., from solar radiation) was employed. The
depths of surface mixing for the shallowing experiments after 1, 2, and 5 d are listed in Table 4.
As for the wind-deepening experiments, two SMLDs are listed: the depth at which the temperature
becomes 0.20C less than the SST and the depth at which the vertical diffusivity decreases to less
than 1 cm2/s. In the case of strong surface heating, there can be quite a large temperature gradient
within the SML; hence, the depth at which the temperature decreases to less than 0.20 C below the
SST may significantly underestimate the actual depth to which surface mixing is occurring.

The SMLDs predicted by POM, ECOM-si, and SZM are generally quite similar for both the
wind-deepening and shallowing experiments. POM and ECOM-si are set up with identical parameters
for the MYL2.5 turbulence model; hence, the slight difference in MLD must be due to the
differences in the numerical schemes. ECOM-si gave slightly greater SMLDs for the 16 dyne/cm2

wind-deepening case when the timestep was reduced.

The SMLDs predicted by SZM are a little noisier than those predicted by POM and
ECOM-si (Fig. 9). This is likely due to the fact that the MYL2 turbulence scheme does not use
prognostic equations to predict the TKE and the turbulent length scale . The use of prognostic
equations tends to provide a smoother evolution of the turbulence fields. It is notable, however, that
the implementation of the MYL2 mixing scheme in SZM gives results similar to the MYL2.5
scheme in these tests.

For the tests of convective deepening of the SML due to surface cooling, conditions were as
for the mixed-layer shallowing tests except that the initial temperature was taken to be a constant
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19'C down to 50 m, followed by a small, linear decrease to 18.50 C at 100 m, and the surface
heat flux was taken to be -1000 ly/d. As for the shallowing tests, the surface wind stress was
1 dyne/cm2 . For this test, the SMLD was defined as the depth at which the vertical diffusivity
decreased below 1 cm2/s.

The SMLDs from the convective deepening test are plotted in Fig. 10. After 24 h, the SMLDs
predicted by POM, ECOM-si, and SZM were 69, 69, and 67 m, respectively, and after 48 h, the
depths were 82, 83, and 81 m. We might expect that the TKE transport in the MYL2.5 turbulence
model used by POM and ECOM-si would generate larger SMLDs in this convective case than the
MYL2 turbulence model used by SZM, but as found by Martin (1985), the difference is small.
Because of its formulation, the MYL2 turbulence model does not provide any convective penetra-
tion (i.e., erosion of the stable stratification at the base of the turbulent mixed layer). Based on the
results here and previous tests (Yamada and Mellor 1975; Martin 1985), the MYL2.5 turbulence
model provides only a small amount of convective penetration.

4.2 Mixing in the Bottom Boundary Layer

Local mixing of the bottom boundary layer (BBL) due to oscillatory tidal currents was simulated
by setting up the models with doubly periodic boundary conditions as was done for the surface
mixing cases in the previous section. A surface pressure gradient force was imposed to mimic
forcing by the barotropic M2 tide, which has a period of 12.42 h.

The surface pressure gradient force was applied to the models through the term that would
normally be used to define the local tidal potential. (The tidal potential is the effective force
generated by the sun and the moon on the oceans to drive the barotropic ocean tides and is the
equilibrium position that the ocean's surface would take for a particular tidal mode if there were
no other influences.) The term for the tidal potential was added to all the models by subtracting the
horizontal gradient of the tidal potential from the horizontal gradient of the surface elevation where
the latter appear in the momentum equations.



From the horizontally homogeneous form of the momentum equations, it can be shown that
the tidal currents generated by a forcing term equivalent to a sinusoidal surface elevation gradient
in the x direction of the form

at
ax =AP sin (), (52)

where p is the tidal potential, Ap is the amplitude of the surface elevation gradient, cO is the tidal
frequency, and t is the time, will generate barotropic currents

ii =Au cos (wt) (53)

and

v =Av sin (cot), (54)

where the current amplitudes, Au and Av' are

Au =A 2g (55)P2 2

and

Av=A gf (56)

This is the classic problem of the periodic forcing of a harmonic oscillator. It can be seen that, for
this idealized problem, the amplitude of the current goes to infinity as the frequency of the forcing
(X approaches the local inertial frequency f. For co = 1.405 x 104 s (the frequency of the M2 tide),
f = 2x/(24 h), and Ap = 10-5, the amplitude of the currents are Au = 95 cm/s and A, = 49 cm/s. Note
that this analysis has not included bottom drag, which will tend to modify the currents to some
degree. The value of the bottom drag coefficient (calculated from (21) with Cbmin =0.0025 and
Z = 0.3 cm) is 0.0061.

Besides the amplitude of the tidal forcing, the depth of mixing will depend on the Coriolis
parameter, the initial stratification, and the parameterization of bottom drag. The temperature and
salinity were initialized as for the wind-deepening experiments in Sec. 4.1, i.e., the temperature was
defined by an SST of 240C with a linear gradient of 0.05'C/m, and S was taken to be a constant
35 psu. The total depth was taken to be 100 m, the vertical grid spacing was a uniform 1 m, f was
set to 2/(24 h), and At was 600 s. Note that the total depth should not affect the depth of mixing
in the BBL unless the mixing gets near the surface.

Figure 11 shows BBL depth (BBLD) versus time for the models, calculated for three different
values of the tidal forcing amplitude Ap: 2.5 x 10-6, 5 x 10-6, and 1 x 10-5. The values of the tidal
current amplitude Au from (55) for these three cases are 24, 48, and 95 cm/s.

The BBLD in Fig. 11 is defined as the depth at which the temperature becomes 0.20 C greater
than the bottom-layer temperature. Note that with this definition, the BBLD for the initial stratification
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that was used is 4 m, as can be seen in Fig. 11. The BBLD defined by the temperature change of
0.20 C was generally within 2-3 m of the BBLD defined by the depth of significant turbulent mixing
(defined as the depth where K > 1 cm2/s).

The near-surface currents produced by the models in these simulations agreed very closely
with the currents that were expected based on (53-56). Near the bottom, the currents are reduced
by the bottom drag condition imposed by the quadratic drag law used in the models. It is, of course,
the vertical current shear generated by the bottom drag that generates the mixing in the BBL in this
problem. The turbulent mixing starts at the bottom and the depth of the BBL increases as the
turbulence erodes the density stratification from below.

The BBLDs predicted by the models are quite similar and evolve similarly in time. The
BBLDs predicted by SZM increase relative to the BBLDs predicted by POM and ECOM-si as
the magnitude of the forcing is increased.

In the initial simulations of tidal mixing, a problem was encountered with the BBLDs predicted
by POM. The BBLD was much larger than the values obtained with the other models, and the
profiles of KH were very noisy. Investigation of the problem showed that it was due to round-off
error in calculating the density when using 32-bit floating point arithmetic. A comment within
subroutine DENS of POM recommends that several variables be made double precision when using
32-bit arithmetic. When the recommended variables in DENS were converted to double precision,
the mixing problems were eliminated.

Note that the density calculation used in POM differs from that used in the other models in
that POM includes the effect of pressure on the density. This aspect of the density calculation
appears to be especially sensitive to round-off error. If the model density includes the effect of
pressure, this must be accounted for when calculating the buoyancy term in the TKE equation,
which POM does. Otherwise, vertical turbulent mixing will be significantly (and incorrectly) retarded
by the vertical gradient of density due to the pressure.
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4.3 Formation of a Tidal Mixing Front with Stratification Generated by Surface Heating

The formation of a tidal mixing front along an infinite coast was simulated by setting up the
models in what we call "pseudo 2-D" form. In this form, one of the horizontal directions (in this
case, the y direction) is set up with the minimum number of interior gridpoints (two) and with
periodic boundaries. With this setup, the models behave as if they were 2-D without the effort to
actually convert the models to a true 2-D form (although, of course, such a pseudo 2-D model is
not as computationally efficient as a true 2-D model would be). Note that while the pseudo 2-D
setup does not allow any variability in the y direction, currents in the y direction can develop.

The bathymetry in the offshore direction consisted of a linear slope of 0.000571 from a depth
of 20 m at the coast to a depth of 200 m at a distance of 315 km from the coast, followed by a
constant depth of 200 m out to the open boundary at a distance of 406 km from the coast (Fig. 12).
The horizontal grid spacing was 7 km. For the main set of simulations, 20 sigma layers were used
in the vertical with a spacing in the deep water of 5 m at the surface and with a uniform stretching
of the grid to the bottom. Simulations were also conducted with SZM with z-level grids of 20 and
50 levels.

Rather than impose an initial stratification, the thermal stratification was allowed to develop
from an initially homogeneous condition under the influence of surface heating and mixing. The
solar flux (Qr) and the downward surface heat flux (Qb + Qe + Qs) were taken to be 450 and -300
ly/d, respectively. These fluxes give a net surface heating of 150 ly/d. A two-band approximation
of Jerlov Type IA seawater (Jerlov 1968) was used to describe the solar extinction

y(z) = 0.38ez/( 20 m) + 0.62ez/(0. 3 5 m) (57)

This parameterization gives more solar penetration than usually occurs in coastal water, which
tends to be more turbid than Type IA. However, this extinction, together with the surface heat
fluxes, maintains an SMLD of about 12 m (due to convection driven by the solar penetration)
without the need to employ a surface wind stress to provide mixing of the surface layer.

The M2 tide was forced at the open boundary by specifying a sinusoidally varying surface
elevation with an amplitude of 1 m and a period of 12.42 h. Table 5 lists results from the simulations.
The values listed in Table 5 include the internal mode (baroclinic) timestep At, the timestep for
the free surface mode Ate, the amplitude of the surface elevation at the coast, the maximum tidal
current that occurs within the model, and the depth of the water at the location of the front. The
tidal elevation amplitude predicted by the models at the coast is about 3.5 m (the bathymetry is
such that the tide amplifies significantly over the shelf), and the maximum tidal currents are about
70 cm/s.

20 m T
I E Fig. 12- Schematic showing the model domain used

°, for the problem of the formation of a tidal mixing front

315 km 1-91 km.-
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Table 5 - Comparison of Model Results for the Formation of a Tidal Mixing Front.
Tidal Amplitude at Open Boundary is 100 cm.

MAX AMP MAX DEPTH AT
VERTICAL NUMBER At Ate AT COAST CURRENT FRONT

MODEL GRID LAYERS (s) (s) (cm) (cm/s) (m)

POM sigma 20 900 30 351 70 88
ECOM sigma 20 900 900 330 66 84
SZM sigma 20 900 900 366 68 88

POM sigma 20 200 10 356 71 88
ECOM sigma 20 200 200 368 73 92
SZM sigma 20 200 200 358 66 88

SZM z-level 20 900 900 377 73 96
SZM z-level 50 900 900 378 71 96

Figure 13 shows temperature sections at 30 d from the model
vertical grids of 20 sigma layers and with At = 900 s. The results of
surface heating builds up a vertical temperature differential of about

10 20 30 40
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simulations conducted with
the models are similar. The
1.30 C in the offshore water.

Fig. 13 -Temperature x-z sections
at 30 d for the formation of a tidal
mixing front for (a) POM, (b) ECOM-
si, and (c) SZM. The tick marks along
the horizontal axis denote the
gridpoint locations. 20 sigma layers
were used in the vertical, with an
upper layer thickness of 5 m in deep
water and a uniform stretching to the
bottom.
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Mixing near the bottom due to the tidal currents maintains a deep BBL. A tidal mixing front forms
at a depth of about 90 m where the BBL merges with the SML. The SST differential across the
front is about 0.70 C. The front is qualitatively similar to the observation of a tidal mixing front in
the Irish Sea shown by Simpson and James (1986). Offshore of the front, the water is stratified, and
inshore of the front the water is vertically mixed from the surface to the bottom. There is a cooling
of the SST as the tidal mixing front is approached from its offshore side. However, there is a
warming of the water toward the coast on the inshore side of the front that is caused by the fixed
surface heat flux being mixed into a water column of decreasing depth.

Table 5 lists model results with baroclinic timesteps of both 900 and 200 s to give some idea
of the sensitivity of the simulations to the timestep. Note that a timestep of 200 s is much smaller
than would normally be needed to maintain numerical stability on a 7-km grid. ECOM-si showed
the largest change due to the reduction of the timestep, a 10% increase in the tidal elevation and
currents. This increase may be due to the damping of surface waves by ECOM-si's fully implicit
treatment of the surface waves at larger timesteps, which is discussed in Sec. 5.0. SZM showed a
decrease in tidal amplitude with the smaller timestep and POM showed a small increase.

Figure 14 shows a comparison of results from SZM for the tidal mixing front problem
conducted with different vertical grids: (a) a sigma coordinate grid with 20 layers (this is the same
result with SZM that appears in Fig. 13c), (b) a 20-layer primarily z-level grid with 18 z-levels and
two sigma layers at the surface to take up surface elevation changes (this grid provides the same

04 1 
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200 (aI Fig. 14 -Temperature x-z sections
at 30 d for the formation of a tidal

0 1111|||| |~ | | 1 | EGOmixing front using SZM with
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200 I I I. .I:(b) have the same vertical spacing
in deep water. The 50-layer z-level

0 ;16.o07.||6.-- || grid in (c) has a uniform 4-m vertical

100 t I! ! ! ( !..S~ I nspacing and exactly resolves the shelf
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resolution as the 20-layer sigma coordinate grid in the deepest water), and (c) a uniform
(unstretched) primarily z-level vertical grid with 50 total layers with the two top layers being sigma
layers.

The results of the simulations with the different vertical grids in Fig. 14 are generally similar.
However, one noticeable difference between the results is the wavy disturbance of the isotherms in
Fig. 14b, the simulation with the grid of two sigma layers and 18 z-levels. In this simulation, the
fitting of the bathymetry to the z-levels results in a step-like bottom, with several horizontal
gridpoints along each step. A result of the steps is that the convergence of the onshore, barotropic
tidal flow is concentrated at the faces of the steps. Hence, instead of the vertical flow varying
uniformly in the horizontal, there is a vertical "jet" at the face of each of the steps that, since the
flow is approximately barotropic, reaches all the way up through the water column. A schematic
that illustrates this is shown in Fig. 15. As can be seen in Fig. 14b, the vertical jets displace the
isotherms above each of the steps.

Better resolution of the bathymetry, which can be obtained by increasing the number of
vertical levels, will reduce this effect. In Fig. 14c, the (primarily) z-level grid with uniform (4-m)
spacing exactly resolves the bottom slope. Hence, the horizontal variation of the convergence of the
onshore/offshore tidal flow and the vertical displacement of the isotherms occurs smoothly. Some
z-level models employ truncation of the bottom grid cells to the actual bathymetry to better resolve
the bathymetry (Wolff et al. 1996).

The two simulations with SZM that were conducted with z-level grids resulted in slightly (3%)
stronger tides than the simulation with sigma coordinates (Table 5).

4.4 Checkerboard Mixing

A phenomenon that occurs with all the models in certain situations is differential vertical
mixing at alternate horizontal gridpoints, a phenomenon that will be referred to here as "checker-
board mixing." This was observed to occur in the SML under conditions of surface heating and
light winds.
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Fig. 15 - Schematic showing an x-z section for the
horizontal convergence of a barotropic flow toward
the coast for a model with a z-level vertical grid in which the
bathymetry is rounded to the nearest z-level. The horizontal
convergence is localized at the front of a step and generates
a vertical jet at the front of the step.
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An idealized experiment will be conducted here to illustrate how checkerboard mixing occurs.

The experiment was conducted on a horizontal grid of 11 x 11 points with doubly periodic bound-
aries and with 20 layers in the vertical. The horizontal grid spacing was 5 km, the vertical grid
spacing was 5 m, and the latitude was taken to be 29.910 N. The initial conditions were T = 20'C
and S = 35 psu with the ocean at rest. The forcing was a uniform wind stress of 0.5 dynes/cm 2 and
a uniform surface heating of 150 ly/d (73 watts/m2 ). The results presented here were obtained with
POM; however, the other models show the same behavior.

Figure 16 shows contour plots of the SST and SMLD after 2 d. The tick marks along the axes
show the gridpoint locations. What has happened is that the vertical mixing has mixed deeper at
alternate gridpoints. The SST shows the checkerboarding pattern since the SST is warmer where the
SMLD is shallower. The checkerboarding occurs because of the way vertical mixing is calculated
by the models on a C grid. The staggered velocities (Fig. 17) are averaged to the grid-cell centers
to calculate the vertical mixing coefficients. The vertical mixing of T and S occurs at the grid-cell
centers where T and S are defined. However, the vertical mixing coefficients for momentum are
averaged back to the staggered velocity points to calculate vertical mixing of u and v.

The checkerboarding pattern gets set up because slightly weaker mixing at a point relative to
that at an adjoining point is reinforced on the next timestep. The weaker vertical mixing of T and
S results in stronger stratification at that location, which inhibits mixing on the next timestep. The
vertical shear of the horizontal velocity remains fairly uniform horizontally because of the horizontal
averaging of the vertical eddy coefficients for momentum. Hence, the vertical stability is governed
by the vertical mixing of T and S.

Figure 17 shows a schematic illustrating the checkerboarding situation. The vertical eddy
coefficients at the grid-cell centers alternate in magnitude, and the strength of the vertical stratification
alternates accordingly. When the vertical eddy coefficients are averaged to the staggered u velocity

1~~~~~~~ 11, \V 11
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000~~~~0'
0 0~~~~~~~~~~~~~~~~~~0 1
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Fig. 16- (a) SST and (b) SMLD at 2 d for the simulation of checkerboard mixing. The SMLD is defined as the depth
at which the temperature is 0.20 C less than the SST. The contour interval is 0.10 C for the SST and 2 m for the SMLD.
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Fig. 17-Schematic to help explain the cause of checkerboard mixing. The
diagram shows an x-z section through the center of a row of grid cells.

points at the edges of the grid cells, the horizontal variations are averaged out. Hence, the vertical
eddy coefficients for momentum, and as a result, the vertical velocity shears are fairly uniform
in the horizontal. Once the checkerboarding pattern is initiated, it reinforces itself and becomes
locked in.

If the conditions in the idealized problem discussed above are kept perfectly uniform in the
horizontal, the response remains horizontally uniform with identical mixing at each horizontal
point. However, any horizontal inhomogeneity introduced into the problem can trigger the checkerboard
mixing. In the case shown in Fig. 16, the SST at the center gridpoint of the domain was increased
by 0.010 C. With the introduction of this inhomogeneity, the checkerboarding initially spreads
laterally in the direction of the applied windstress, and within 2 d covers the entire domain.

Checkerboard mixing patterns were observed in several different simulations that were conducted,
including some preliminary simulations of the tidal mixing front problem in which a weak wind
stress was applied and the solar penetration was turned off. However, discussions with other modelers
indicate that it has not been widely noticed. Whether or not checkerboard mixing occurs depends
on a number of factors including the applied surface fluxes, the degree of solar penetration, and the
grid spacing. It seems less likely to occur or make itself known when realistic temporally and
spatially varying atmospheric forcing is being used. Even when it does occur, it might be viewed
primarily as an aesthetic problem. The discussion of checkerboard mixing was provided here mainly
to acquaint the reader with the phenomenon in the event it should be encountered.

5.0 TEST SURFACE WAVE PROPAGATION

Wave propagation is an important aspect of the dynamics of coastal regions. The next three
sections discuss tests of wave propagation in the models. These tests consider freely propagating
surface waves, freely propagating internal waves, and coastal-trapped waves including surface and
internal Kelvin waves and barotropic shelf waves.

Note that, for a particular application, the accuracy of propagation of a particular type of wave
may or may not be significant. However, an ability to accurately simulate the propagation of
surface, internal, and coastal-trapped waves is, in general, desirable for a model that is to be applied
to a wide range of coastal processes.
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For all the wave tests, the waves are defined to be propagating in the x-direction. Hence, the
model domains are periodic in x, with the wavenumber in the x-direction chosen so as to fit an
integral number of wavelengths.

The models are initialized from the linear, analytical solution for the waves, and the model
errors are calculated by comparison of the model fields with the analytic solution. To optimize
comparison of the model simulations with the linear, analytic solutions, the amplitudes of the
waves are made small to minimize nonlinear effects, bottom drag is set to zero, the diffusion
coefficients are kept small, and the lateral boundaries for the coastal trapped wave simulations are
made free slip.

Three aspects of wave propagation by the models are investigated: (1) phase speed error,
(2) damping, and (3) distortion of the wave form,

The phase speed error for the models is calculated by finding the phase speed that gives the
best fit of the analytic solution to the model solution, i.e., the minimum root-mean-squared (RMS)
difference or maximum correlation between the analytic and model solutions. Note that the other
model errors are calculated with the phase of the analytical solution matched to that of the model
solution.

The damping is calculated by finding the fractional damping factor D for the analytic solution
that gives the minimum RMS error between the analytic and model fields (with the phase of the
analytical solution matched to the phase of the model solution). Originally, the damping was
calculated by comparing the magnitudes of the maximum and minimum values of the analytic and
model fields; however, this calculation tended to underestimate the model damping if there was
any noise in the model fields. The e-folding damping timescale td is computed from the elapsed
time t and the amount of damping as td = -t/ln(D).

The distortion of the waves is characterized by the correlation between the analytic and model
fields (again, with the phases of the fields matched).

These three types of error can be considered to be independent. For example, if the wave
propagates with a certain phase speed error, but maintains its original amplitude (corresponding to
zero damping error), its damping timescale will be infinite. Similarly, if the wave propagates with
a certain phase speed error and a certain amount of damping, but perfectly maintains its initial
form, the correlation of the model solution with the analytic solution will be exactly one.

In addition to calculating the phase speed error, damping error, and correlation, the RMS
difference between the analytic and model solutions is also reported. This RMS error is calculated
with the phase of the analytic solution matched to that of the model solution, but without any
damping applied to the analytic field, i.e., the RMS error will reflect both the damping and distortion
of the model solution, but not the mean phase speed error.

5.1 Description of Surface Wave Tests

The propagation of plane parallel surface waves was tested using a doubly periodic (periodic
in both x and y) model domain. With the waves propagating in the x direction, there is no variation
of the fields in y, i.e., the problem is 2-D with variation only in x and z. Hence, the doubly periodic
grid is used with the minimum dimension in y (two interior gridpoints) that can be used with the
3-D model codes (this was referred to earlier as a quasi 2-D model grid).
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The waves were initialized in the models from the analytical solution for linear, shallow-water
(i.e., with wavelength large relative to the depth), surface gravity waves propagating in the
x-direction. The equations for these waves are

au
- =fv-g a, (58)

-=-fua (59)

=-u

d -H au (60)
at ax

The analytical solution for the waves is

C=A cos (kx - ot), (61)

u =A - cos (kx- cot), (62)kH

v =A f cos (kx- cot), (63)
kH

where A is the maximum amplitude of the surface displacement, k is the horizontal wavenumber,
and o is the frequency. Note that k = 27t/L, where L is the wavelength and co = 2n/P, where P is
the wave period. The dispersion relation for these waves is

(2 =cok +f (64)

where c = (gH)- and the phase speed is

C = k = (co + k2) * (65)

For wavelengths less than about 100 km, the Earth's rotation does not have much effect on
surface waves because the period of the waves is sufficiently short relative to the local inertial
period (2ri/f) that rotational effects do not have much time to act. The effect of the wave frequency
on the phase speed is easier to see if the expression for the phase speed (65) is rewritten as

f2 2c=Co c1- 2 j .(66)

For the shorter waves, c = co and the waves are approximately non-dispersive, i.e., the phase speed
is independent of wavelength. For long wavelengths of order 1000 km, the phase speed depends on
the wavelength and the waves are dispersive.
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Tests were conducted both for short waves (L < 100 km) and for long waves (L > 1000 km)
that are affected by rotation. The depth H of the model region was set to 40.81 m, which gives
c = 20 m/s. T and S were set to constant values of 20'C and 35 psu, respectively. (Note that the
particular (constant) values of T and S that are used do not affect the propagation of surface waves
in the models.) Bottom drag was set to zero. Ten uniformly spaced layers were used in the vertical.
Since the bottom drag is set to zero, there are no vertical variations in the flow and the number of
vertical layers that is used is arbitrary. For the Asselin-filtered leapfrog schemes of POM and SZM,
v was set to 0.05, which is the value typically used in the models.

The internal timestep At for the explicit surface wave propagation scheme used by POM was
(for most of the tests) set to a value commensurate with the need to (in more general circumstances)
maintain stability for the internal wave propagation and horizontal advection terms for a maximum
expected speed of about 2 m/s. This is greater than the maximum speed of internal waves and ocean
currents in most coastal areas. The external timestep for POM Ate has to be made sufficiently small
to maintain stability for the propagation of the surface waves. The restriction for POM's explicit
scheme is that Ate must be sufficiently small that a surface wave cannot travel a distance Ax in a
single timestep.

The models with an implicit treatment of the surface waves, ECOM-si and SZM, integrate all
their terms with a single timestep. Since these models treat surface waves implicitly, their timestep
is not restricted by stability considerations for the surface waves; hence, their timestep is limited
by advection and internal wave propagation, as is the internal timestep of POM. Thus, the timestep
for ECOM-si and SZM was generally set the same as the internal timestep used for POM. Some
tests were conducted with ECOM-si and SZM with smaller timesteps to look at the effect of
timestep on the accuracy of surface wave propagation for their implicit schemes.

5.2 Surface Wave Propagation without Rotation

The accuracy with which the models propagate surface waves depends on the numerical scheme
and the temporal and spatial resolution used. A stability analysis of the numerical schemes used in
the models for surface wave propagation with f= 0 is presented in App. A. The stability analysis
predicts the damping and phase speed error to be expected for a particular numerical scheme,
timestep, grid resolution, and wavelength. The errors predicted by the stability analysis agree well
with the errors observed with the models.

The results of the tests of surface wave propagation are presented in Table 6, which lists the
phase speed error, damping timescale, and the correlation and RMS error after 12 h for each of
the models for different values of grid resolution, internal and external timestep, and wavelength.
If values of the correlation are not listed in the table, it is because the waves became too damped
at 12 h to calculate reliable values. Note that the RMS error asymptotes to 0.7071 cm as the model
solution becomes completely damped.

The most notable result in Table 6 is how much more accurately the explicit scheme propagates
surface waves, especially surface waves of short wavelength. The reason is the much smaller
timestep used by the explicit scheme to resolve surface wave propagation. The relatively
large timestep generally used with the implicit models cannot resolve the propagation of short
surface waves.
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The accuracy of surface wave propagation in the implicit models can be increased by reducing
the timestep, as is shown in the lower part of Table 6. However, because both the external and
internal modes of the implicit models are integrated with the same timestep, reducing the timestep
significantly increases the computer time required to run these models.

For the propagation of surface waves without rotation, ECOM-si and SZM have equivalent
phase speed errors, but ECOM-si has much greater damping because of its fully implicit treatment
of the terms governing the surface wave propagation. Table 6 shows that even with a very small
timestep (10 s), ECOM-si strongly damps short surface waves. The terms governing the surface
waves in POM and SZM are centered in time, which in itself does not result in any damping. The
damping of surface waves in POM and SZM is due to the Asselin filter (App. A).

5.3 Surface Wave Propagation for Long Waves Affected by Rotation

In this section, the propagation of surface waves is examined for f= 0.7292 x 104 s, which
corresponds to a latitude of 29.91° N. The depth is taken to be 40.81 m as in the previous section.
The wavelength used in these tests is 1280 km. Equation (65) gives a phase speed for these waves
of 24.89 m/s, and it can be seen that rotation has increased the phase speed of the waves over that
(20 m/s) for the case without rotation. The period of the waves is 14.28 h, which is sufficiently
long for rotational effects to significantly affect the waves.

Table 7 shows the damping and phase speed error calculated for the models for grid resolutions
of 10-40 km and timesteps of 1800-7200 s. As was the case with f= 0, the implicit treatment of
the surface waves is much more damping than an explicit treatment when the timestep for the
implicit scheme is set by the typical stability limitations for horizontal advection and internal wave
propagation.

The damping in both POM and SZM is due to the Asselin filter. The damping of POM is about
20 times smaller than that of SZM because of the smaller timestep used for the calculation of the
surface waves with the explicit treatment of the external mode.

The damping of ECOM-si is about 10 times larger than that of SZM. The severe damping of
ECOM-si in these results is due to the combination of the fully implicit scheme and the
large timestep. Note that the results obtained for ECOM-si in Table 7 (as are all the results for
ECOM-si in this report) are for the AB2 treatment of the Coriolis terms that was implemented to
allow the use of large timesteps. The errors calculated with ECOM-si were somewhat noisy, and
the damping and phase speed errors in Table 7 are averages of values taken over the first few
timesteps. Calculations with the original lagged treatment of the Coriolis terms were, however,
even more noisy and sometimes became unstable.

The phase speed error for these long wavelength waves is less than 1% for POM. For
ECOM-si and SZM, the phase speed errors are small for the typical grid resolutions used in coastal
modeling, though the errors become significant (1-10%) at the larger timesteps that might be used
if these models were applied to large domains with a grid spacing of 20-40 km.

5.4 Tidal Propagation

The primary importance of surface wave propagation in coastal models is usually to provide
an accurate simulation of tides and wind setup or storm surge. Since the tides generally have fairly
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long wavelengths, the tidal propagation by the
models tends to follow the behavior obtained
in the previous section for long surface waves
with rotation.

Fig. 18 -Model domain.for the test problem of tides In this section, a sample tidal calculation
in a bay is used to illustrate the general effect of the

temporal resolution of the models on tidal
prediction accuracy. This calculation is pre-

sented as a single illustration. A thorough study of the accuracy of tidal prediction with the models
would involve investigation of a number of variables including both temporal and spatial resolution,
bathymetry variability, and nonlinear tidal generation.

The model domain for this test problem is a rectangular bay 240 km long and 32 km wide with
a uniform depth of 10 m (Fig. 18). The domain is closed except for an open boundary on the east
end. The tidal elevation is specified at the open boundary (i.e., a "clamped" elevation boundary
condition) with a sinusoidal variation, an amplitude of

Table 8- Comparison of the Models for the Propagation
of the Tide in a Bay. The Magnitude and Phase Listed
in the Table is that for the Maximum Elevation at the
West End of the Bay.

10 cm, and a period corresponding to the
M2 tide (12.42 h). (A small amplitude
is used to reduce nonlinear effects.)
The horizontal grid resolution is 4 km
and the vertical grid consists of 10 equally
spaced sigma layers. T and S are taken
to be constant. The Coriolis parameter
is f= 2n/(24 h) and the bottom friction
coefficient is 0.0061. Since the magni-
tude of the vertical mixing coefficients
will affect the tidal calculation in these
models, the vertical mixing coefficients
were set to a constant 100 cm 2/s for all
the models to provide a more consistent
comparison.

Table 8 lists the maximum tidal
elevation and corresponding phase at
the west end of the bay for POM,
ECOM-si, and SZM for values of At
ranging from 50 to 3200 s. The
maximum elevation values from
Table 8 are plotted in Fig. 19. Note that
for POM, Ate has been taken to be equal
to At/20.

For small values of At, the models
predict a similar magnitude and phase
for the elevation at the west end of the
bay. For the fine grids usually used in
coastal modeling (Ax < 1 km), the small
timesteps that are required (At < 200 s)
provide good resolution of the tidal

32 km

l

MAXIMUM ELEVATION
At Ate MAGNITUDE PHASE

MODEL (s) (s) (cm) (deg)

POM 50 2.5 9.63 188
100 5 9.61 188
200 10 9.58 188
400 20 9.54 187
800 40 9.49 186

1600 80 9.56 182
3200 160 9.85 181

ECOM-si 50 50 9.58 189
100 100 9.53 188
200 200 9.43 188
400 400 9.25 187
800 800 8.87 187

1600 1600 8.00 186
3200 3200 6.32 180

SZM 50 50 9.63 189
100 100 9.63 189
200 200 9.62 189
400 400 9.61 190
800 800 9.54 190

1600 1600 9.92 185
3200 3200 11.06 195

-
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Fig. 19 - Maximum tidal elevation at west end of bay for
M_ 6 wPOM, ECOM-si, and SZM for different values of the

timestep. The tide was forced by specifying the elevation
0 at the east end of the bay with an amplitude of 10 cm with

4D_ a period corresponding to the M2 tide.
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period and will generally produce fairly accurate tidal predictions, depending on the accuracy
requirements and the particular aspects of the simulation.

The simulations with POM maintained the best accuracy for the tidal amplitude at the larger
timesteps (Table 8, Fig. 19). SZM provides fairly good accuracy for this problem up to At = 800 s.
For larger timesteps, there are significant increases in SZM's errors due to poor resolution of the
tidal period. The tidal amplitude predicted by ECOM-si shows significant damping at the larger
timesteps, which is consistent with the results of the other surface wave propagation tests.

As the grid spacing and timestep are increased, the implicit treatment of surface waves results
in increasingly severe temporal truncation error for tidal simulation. In simple geometries, the
temporal truncation error of the implicit schemes at large timesteps may dominate the tidal prediction
error. However, in tidal simulations in realistic coastal environments, spatial truncation error will
also become more severe as grid resolution is decreased because of poor representation of the
bathymetry and the coastline. Consideration of spatial truncation error tends to limit the size of the
grid spacing used in coastal tidal simulations.

6.0 TEST OF INTERNAL WAVE PROPAGATION

Internal wave propagation in the models was tested by comparing the model solutions to
analytical solutions for small amplitude internal waves propagating in a flat-bottomed ocean with
a linear vertical density gradient.

The linearized equations for hydrostatic (long) internal waves propagating in the x-direction
in a salt-stratified ocean are

au lp (67)
at p0 ax'
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av = -fu, (68)

ap Pg' (69)

aS N2 (70)
at dg

au aw =0 (71)
ax az

where p is the density, p is a reference density, S is the salinity, N= (PgaS/az)11 2 is the
Brunt-Viasala frequency, and j3 is the coefficient of expansion for salinity. (Salt stratification,
rather than thermal stratification, was used for this test because of the high linearity between
salinity and density changes at constant temperature, i.e., f3 is fairly constant.) The key to linearizing
the internal wave equations is taking the density stratification in the salinity equation to be fixed,
which requires that the amplitude of the internal waves be relatively small so that the basic
stratification is not significantly changed by the propagation of the waves.

The analytical solution to the above equations for freely propagating internal waves for a flat
bottom (H = constant) and a linear density stratification (N = constant) is

u =A- cos (mz) cos (kx- t), (72)
k

v =A f cos (mz) sin (kx- cot), (73)k

w =Aw sin (mz) sin ( - cot), (74)

N2
S' =A - sin (mz) cos (kx- cot), (75)

where A is the maximum amplitude of the vertical displacement, S' is the deviation of the salinity
from the background stratification, m = nx/H is the vertical wavenumber, and n is the vertical mode
number. The dispersion relation for the internal waves is

@2= N~ 2 +f (76)
m

Hence, the phase speed is

(m k f (77)
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Equations (76) and (77) indicate that rotational effects tend to increase the frequency and phase
speed of internal waves.

If we have

f2 N2

k2 m2 ' (78)

the Earth's rotation will not significantly affect the propagation of the internal waves and the waves
will be nondispersive. For the long internal waves being considered here (L about 10 km), this
condition may or may not be satisfied, depending on the particular values of the parameters in (77).
Slower phase speeds and longer wavelengths both increase the period of internal waves and increase
the time during which rotational effects can act to modify the waves. Equations (76) and (77) can
be combined to give

c = N (1 - f ) (79)

which makes it clear that the influence of the Earth's rotation on the propagation of internal waves
depends on the ratio of the inertial and internal wave frequencies.

For the tests of internal wave propagation conducted with the models, the depth H was taken
to be 40 m, the temperature was taken to be a constant 20'C, and a linear salinity stratification was
used with a surface salinity of 30 psu and a bottom salinity of 40 psu. With this stratification,
N = 0.0426 s1. The background vertical viscosity for momentum was set to 0.1 cm2/s. The back-
ground vertical diffusivity for salt was set to a lower value of 0.001 cm2/s so as not to significantly
diffuse the ambient salinity stratification. Bottom drag was set to zero. Sixteen layers were used in
the vertical with a uniform spacing.

Tests were conducted both with f = 0 and with f = 2/(24 h). Table 9 lists the analytical phase
speeds for the internal waves for various wavelengths and vertical modes for the constant stratification
used in the tests. Phase speeds are given for f= 0 and = 2t/(24 h). I

As a matter of interest, non-hydrostatic phase speeds are also listed in Table 9. These internal
wave phase speeds are calculated without making the hydrostatic approximation, which is used by
all the models being tested here. Table 9 illustrates that the hydrostatic phase speeds are the same
as the non-hydrostatic phase speeds for the longer internal waves, and are only slightly in error for
1-km wavelength waves.

6.1 Test Internal Wave Propagation without Rotation

Tables 10 and 11 list the errors calculated for the propagation of first and fourth mode internal
waves of various wavelengths with f = 0. The horizontal resolution of the waves ranges from 64 to
4 points per wavelength. Since there are a total of 16 vertical layers, the mode 1 waves have
16 points per mode in the vertical and the mode 4 waves have 4 points per mode.

The errors for POM and SZM are similar. Since these models use basically the same numerical
scheme for the baroclinic part of the equations (leapfrog in time and second-order, centered spatial



Table 9- Analytical Phase Speed for Hydrostatic and Non-Hydrostatic
Internal Waves for a Depth of 40 m and a Linear Salinity Stratification
with a Brunt-Vaisala Frequency of 0.0426 1/s

PHASE SPEED (cm/s)

HYDROSTATIC
WAVES

NONHYDROSTATIC
WAVES

MODE WAVELENGTH (km) f=0 f= 2 f=0 2

1 64 54.25 91.82 54.25 91.82
32 65.69 65.69
16 57.33 57.32
8 55.04 55.03
4 54.45 54.24 54.44
2 54.30 54.21 54.26
1 54.26 54.08 54.09

2 64 27.13 78.88 27.13 78.88
32 45.91 45.91
16 32.84 32.84
8 28.66 28.66
4 27.52 27.12 27.52
2 27.22 27.22
1 27.15. 27.13

4 64 13.56 75.30 13.56 75.30
32 39.44 39.44
16 22.95 22.95
8 16.42 16.42
4 14.33 13.56 14.33
2 13.76 13.76
1 13.61 13.61

differences), the errors would be expected to be similar. The
the spatial resolution of the waves is reduced.

magnitude of the errors increases as

The phase speed and damping errors for ECOM-si are similar to those for POM and SZM. The
correlation errors for ECOM-si are also similar at the longer wavelengths, but become larger at
the shorter, less well-resolved wavelengths, which indicates more distortion of the waveform. The
spatial treatment of the baroclinic mode in ECOM-si is the same as that in POM and SZM. However,
the temporal treatment is different since ECOM-si lags the horizontal pressure gradient and advection
terms in time. Even though the internal waves are fairly well resolved in time by the 200-s timestep,
ECOM-si appears to suffer some effects of temporal truncation error when the internal waves are
less well-resolved by the grid.

Figures 20 and 21 show plots of the initial salinity anomaly S' and the anomaly from the
models at 48 h for the mode 1 internal waves for the 64- and 8-km wavelength tests. The anomalies
for POM and SZM in Fig. 20 for the 64-km waves show good symmetry both horizontally and
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asymmetry between the isohalines in the top and bottom halves of the domain. This distortion is
more apparent in Fig. 21 for the 8-km waves and is due to a slight decrease in the background
salinity in the upper half of the domain and an increase in the bottom half (the salinity anomalies
are computed based on the original background salinity stratification).
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0 5 1 15

15

X-AX(IS

Fig. 21 -Salinity anomaly 5' for propagation of internal waves of 8-km wavelength.
The uppermost plot shows the initial condition and the other plots show results after
48 h for POM, ECOM-si, and SZM. The internal wave amplitude was 100 cm and the
timestep was 200 s.
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The modification of the background salinity by ECOM-si during internal wave propagation is
the result of a numerical truncation error caused by a phase difference between the velocity and
salinity values in the salinity advection term. An investigation of this error is presented in App. B.
The magnitude of the truncation error is approximately proportional to the timestep and the square
of the wave amplitude. For large timesteps and wave amplitudes, the modification of the background
stratification by internal wave propagation in ECOM-si can be significant.

Figure 22 shows a plot of S' at 48 h from experiments with ECOM-si similar to those shown
in Figs. 20 and 21, but with the timestep reduced from 200 to 50 s. These plots show better
symmetry and the modification of the ambient stratification is reduced. Table 10 lists the errors for
this experiment that show the reduction of the correlation and RMS errors brought about by the
reduced timestep.

The bottom of Table 10 also shows errors for the propagation of mode 1 internal waves with
POM and SZM with At reduced to 50 s. The errors are not much different from those obtained
with the larger timestep except that the damping is reduced.

6.2 Test Internal Wave Propagation with Rotation

Table 12 lists the errors computed for the propagation of first-mode internal waves with a
wavelength of 32 km for f= 2n/(24 h). The period of these waves, 13.53 h, is sufficiently long for
the Earth's rotation to accelerate motions normal to the direction of the waves and to modify the

1

5

10

15

2 10 20
Cn
at

5

10

15

30 40 50 60

2 5 10 15

X-AXIS

Fig. 22- Salinity anomaly S' for propagation of internal waves of 64- and 8-km wavelengths
with ECOM-si with a timestep of 50 s. The internal wave amplitude was 100 cm.
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wave propagation. The phase speed of the waves is 65.69 cm/s, about 20% larger than the phase
speed of 54.25 cm/s for the case with f = 0. The horizontal resolution of the waves ranges from 32
to 4 points per wavelength. Since there are a total of 16 vertical layers, the waves have 16 points
per mode in the vertical.

The phase speed, damping, and RMS errors for the waves are similar. ECOM-si has the highest
correlation errors, and slightly higher RMS errors than POM and SZM. Some of ECOM-si's correlation
and RMS error may be due to the modification of the ambient stratification caused by internal wave
propagation, which was discussed in the previous section.

7.0 TEST PROPAGATION OF COASTAL-TRAPPED WAVES

Coastal-trapped waves are an important part of the dynamics of coastal regions. In this section,
the accuracy with which the models propagate several types of coastal-trapped waves is examined.
The types of waves considered are (1) barotropic Kelvin waves, (2) baroclinic Kelvin waves, and
(3) barotropic shelf waves. The basic question is how well the models propagate these kinds of
waves with a particular temporal and spatial resolution.

In all of these experiments, the models are configured in a periodic channel with boundaries
at y = and y = Ly. The along-channel wavenumber k is chosen so as to fit a single wavelength in
the along-channel direction. As with the surface and internal waves, we look at three aspects of the
wave propagation: phase speed error, damping, and distortion of the waveform. The wave propagation
errors are calculated in the same way as the errors for the surface and internal waves.

7.1 Barotropic Kelvin Waves

The equations governing linear, barotropic Kelvin waves propagating in the x-direction along
a coast are

au a- =fv-g-, (80)at ax

av an
at =-fu-6ay ,(81)
at

- =-H -u + a. (82)at ax ayj

The ocean depth H is taken to be constant. A boundary condition required for Kelvin waves is that
the cross-shore velocity v is zero at the coast.

The solution of this set of equations for a barotropic Kelvin wave is

E=Ae-Y/r cos (kx - t), (83)

u =A H eY/rcos (kx-ot), (84)
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v = (85)

where A is the maximum amplitude of the surface displacement at the coast and r = c/f. The
dispersion relation for the surface Kelvin waves is

(I = cok, (86)

where c = (gH) 2 . Hence, the phase speed of the surface Kelvin waves is

C = = co. (87)

Some notable aspects of the Kelvin wave solutions are: (a) the cross-shore velocity v is zero
everywhere (in the equation for v, the Coriolis term is exactly balanced by the cross-shore pressure
gradient), (b) the amplitude of the Kelvin wave decays exponentially away from the coast with an
e-folding scale r, which is referred to as the Rossby radius of deformation, (c) the cross-shore scale
of the waves r is relatively large, i.e., for water depths exceeding 30 m, r > 100 km, (d) the speed of
the waves is that for long surface gravity waves in the absence of rotation and does not depend on
f, (e) the waves are nondispersive, and (f) the waves propagate only in one direction along the
coast, with the coast on the right in the Northern Hemisphere and on the left in the Southern
Hemisphere.

For the tests of surface Kelvin wave propagation in the models, the latitude was taken to be
29.91° N and the depth was taken to be 40.81 m. These values give c = 20 /s and an offshore scale
for the waves of r = 275 km. The along-channel wavelength of the waves was taken to be 1280 km.
The along-channel wavelength was taken to be relatively large to reduce the effect of spatial
truncation error in the along-channel direction. The width of the channel was taken to be 640 km,
which is about 2.3 Rossby radii (the Kelvin wave propagation by the models is not sensitive to the
width of the channel).

The results of the tests of surface Kelvin wave propagation by the models are presented in
Table 13. Three main cases were run with horizontal grid resolutions of 10, 20, and 40 km and
corresponding values of At of 1800, 3600, and 7200 s. Figure 23 shows the analytical solution for
the surface elevation and velocity vectors at 48 h and Fig. 24 shows the surface elevation from the
models at 48 h for the case with Ax = 10 km and At = 1800 s.

The relative results of the models are similar to those obtained for the propagation of surface
gravity waves in Sec. 5.1. The phase speed errors for POM and SZM are similar to those in Table 7
for surface wave propagation in a rotating system (with the same parameter values). The damping
timescale of the Kelvin waves for POM and SZM is about 50% longer than that of the corresponding
freely propagating surface waves in Table 7. POM's explicit treatment of surface waves propagates
the surface Kelvin wave very accurately with little phase speed error and only weak to moderate
damping.

The large timestep used with the implicit schemes of ECOM-si and SZM results in strong
damping of the Kelvin waves, with ECOM-si's damping by its fully implicit treatment of the free
surface being especially strong. Figure 24 shows that the amplitude of the Kelvin wave propagated
by ECOM-si (with At = 1800 s) is almost completely damped at 48 h. The damping in SZM, as in
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Fig. 23 - Analytical solution for a surface Kelvin wave
at 48 h: (a) surface elevation in centimeters and
(b) horizontal velocity vectors. The scaling arrow in the
velocity vector plot indicates a speed of 0.5 cm/s.

Fig. 24-Comparison of surface elevation (cm) from
the models at 48 h for the propagation of a surface
Kelvin wave: (a) POM, (b) ECOM-si, and (c) SZM.
The horizontal grid spacing was 10 km and the baroclinic
timestep was 1800 s.
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POM, is due to the Asselin filter, but is much larger with SZM than POM with the same filter
coefficient (v = 0.05) because of SZM's much larger barotropic timestep.

The implicit schemes also have significant phase speed errors. We note that SZM's phase speed
error in Table 13 takes a large jump when the timestep is increased from 3600 to 7200 s. This is
due to poor resolution of the inertial period with At = 7200 s, which adds to the gravity-wave
propagation error. Since SZM uses leapfrog and ECOM-si uses a two-time-level temporal scheme,
SZM's timestep is effectively twice as large as ECOM-si's for the same value of At, which means
that SZM feels the effect of poor resolution of the inertial period sooner than ECOM-si as At is
increased.

The bottom of Table 13 shows errors from additional runs made with ECOM-si and SZM for
the case Ax = 40 km, with At reduced from 7200 s to 360 s, i.e., to the value of Ate used by POM.
With this large reduction of the timestep, the errors are significantly reduced, as expected. With
At = 360 s, SZM's errors are about the same as POM's. With At = 360 s, ECOM-si's phase speed
error is small, but the damping by the fully implicit treatment of the surface waves is still high.

From these results, it can be summarized that error in propagating long-wavelength surface
Kelvin waves with these models on coarse grids will be due mainly to temporal truncation error.

7.2 Internal Kelvin Waves

The linearized equations for long (hydrostatic), internal Kelvin waves propagating along a
coast in the x-direction in a linearly salt-stratified sea (with temperature constant) are

au ap
-= fV - ~~~~~~~~~~(88)

at p ax

at -f p a '(89)
at P ay

ap Pg' (90)
az

as = N2 (91)
at P

au av aw
da a + d = ° '(92)

The analytical solution of these equations is

u=A (OM e-y/r Cos (mz) cos (kx- t), (93)
k

v = ( 9(94)



w = Awoe-Y/r sin (mz) sin (r - ct), (95)

A2
S'=A e-ylr sin (mz) cos (- cot), (96)

where A is the maximum amplitude of the vertical displacement and S' is the deviation of the
salinity from the background stratification. The dispersion relation for the Kelvin waves is

Nk_ (97)

where m = n/H is the vertical wavenumber and n is the vertical mode number. Hence, the phase
speed is

= N NH
-k- - . (98)

The properties of internal Kelvin waves are similar to the properties of surface Kelvin waves:
(a) the cross-shore component of the velocity is zero, (b) the amplitude of the waves decreases
exponentially away from the coastal boundary, (c) the phase speed of internal Kelvin waves is the
same as for freely propagating internal waves in the absence of rotation and does not depend on
f, (d) the waves for a particular vertical mode are nondispersive, and (e) the waves propagate only
in one direction, with the coast on the right in the Northern Hemisphere and on the left in the
Southern Hemisphere.

The cross-shore scale of the internal Kelvin waves, which derives from the need to balance the
Coriolis term and the cross-shore pressure gradient in the v-equation, is

Ci Cr=f =-. (99)

For internal waves, the distance r is referred to as the internal Rossby radius of deformation. Since
the phase speed of internal waves is much smaller than the phase speed of surface waves, the cross-
shore length scale of the internal Kelvin waves is much smaller than that for surface Kelvin waves.

For the model tests of internal Kelvin wave propagation, the parameters used were the same
as those used in the internal wave tests, i.e., the depth H was 40 m, temperature was a constant
20'C, and a linear salinity stratification was imposed with a surface salinity of 30 psu and a bottom
salinity of 40 psu. The latitude was 29.91° N. With these values, N = 0.0426 1/s, c = 54.3 cm/s, and
r = 7.46 km. The along-channel wavelength of the waves was taken to be 64 km. The amplitude A
of the Kelvin waves, which is the maximum vertical displacement of the isohalines at the coast, was
initialized to a value of 1 m.

With the above parameters, the phase speed of the internal Kelvin waves is 54.25 cm/s. This
is the same as the phase speed of freely propagating internal waves in the absence of rotation,
and is 20% slower than the speed of freely propagating internal waves with f = 2/(24 h) (Table 9).

Table 14 shows errors for the propagation of internal Kelvin waves with the models for various
values of horizontal grid resolution and timestep. These errors can be compared with those in
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Table 12 for freely propagating internal waves, which were run with the same parameter values. For
all the models, the phase speed error and damping are slightly lower for the Kelvin waves than
for the freely propagating internal waves.

It must be noted that the internal Kelvin waves propagate quite well, even with very coarse
resolution of the cross-channel structure. For example, the case with Ax = 8 km provides only one
point within the first Rossby radius (r = 7.46 km) of the southern boundary of the channel.

Figure 25 shows plots of velocity vectors and S' from the analytical solution for the internal
Kelvin waves at 48 h. The plot of u is for the surface layer (1.25-m depth) and the plot of S' is
for the middle of layer 8 (18.75-m depth). These plots illustrate the horizontal and vertical structure
of a mode 1 internal Kelvin wave.

Figure 26 shows S' from the models at 48 h for the case with Ax = 4 km and At = 800 s. It can
be seen that the results from the models are very similar and agree well with the analytical solution
(Fig. 25c), except for a slight phase lag and a small amount of damping.

7.3 Barotropic Shelf Waves

Barotropic shelf waves are also referred to as topographic waves or topographic Rossby waves.
Their propagation depends on the Earth's rotation and the change in the absolute vorticity of the
water column as the bottom depth changes. Hence, rotation and changes in bottom depth are both
required for their existence. A distinction between these waves and planetary Rossby waves is that
the existence of planetary Rossby waves depends on the latitudinal variation of the Coriolis parameter
rather than changes in depth.

The linearized equations for barotropic shelf waves propagating in the x-direction along a
straight coast are similar to those for surface Kelvin waves, except the depth H must vary with y.
Also, to simplify the analytic solution, the time derivative of the surface elevation is scaled out of
the continuity equation. This is permissible because this term is small and is not essential to the
physics of small-amplitude, topographic waves. The equations are then

at = fv-gaC (100)
at a

av a
at fu-g6a, (101)

at sa~

0=-H-- - (102)
ax ay

The analytical solution of this set of equations is simplified for certain choices of the function
H(y). One possible choice is the function

H(y) = He Y (103)

where Ho is the depth at the coast and a defines the cross-channel scale of the change in water
depth. With the bathymetry given by (103), the analytic solution of (100-102) is (LeBlond and
Mysak 1978)
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Fig. 25-Analytical solution for an internal Kelvin wave at 48 h: (a) horizontal
section of along-channel velocity u at 1.25-m depth, (b) x-z section of u at 4 km
from southern boundary, (c) horizontal section of salinity anomaly S' at depth of
18.75 m, and (d) x-z section of S' at 4 km from southern boundary. Contour interval
is 1.0 cm/s for u and 0.02 psu for S'.
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Fig. 26- Comparison of horizontal section of salinity anomaly S' from models at 48 h
for propagation of internal Kelvin wave for case with 4-km grid spacing and 800-s
timestep: (a) POM, (b) ECOM-si, and (c) SZM. The horizontal section is at the center
of the eighth model layer at a depth of 18.75 m. Contour interval is 0.02 psu.

A Comparison of Several Coastal Ocean Models 65



= eay ((coa -fk) sin (ly) + ol cos (ly) cos (kx - ot)), (104)gk

u =Ae'Y (a sin (y) + I cos (y)) cos (x - cot), (105)

v = Akeay sin (y) sin (c - cot), (106)

where A scales the amplitude of the waves. The dispersion relation for the shelf waves is

2a kf
co 2 2 +2 (107)

The cross-shore wavenumber I is restricted to the values I = na/Ly (where n = 1, 2, 3,... is the
cross-channel mode number) so as to satisfy the condition of zero flow normal to the walls of
the channel. The phase speed is then

cO 2af
k k2 +12 +a2

There is a lot of freedom in defining parameters for shelf waves. The bathymetry, channel
width, and along-shore wavelength can all be specified independently, and for each set of these
values, there is an infinite number of modes in the cross-channel direction.

For the model tests, the depth at the coast Ho was taken to be 20 m and the cross-channel
e-folding scale of the bathymetry was taken to be (2a)-I = 40 km. The width of the channel L was
taken to be 64 km. Hence, the depth in the channel varies from 20 m at the coastal boundary to
99 m at the offshore boundary.

The models were initialized from the analytic solution (104-106) for a single mode in the
cross-channel direction, and for an along-channel wavelength of 128 km. These parameters give
a phase speed for the shelf wave of 36.54 cm/s. The amplitude A of the wave was taken to be
100 m2/s, which gives a maximum amplitude of the surface elevation of about 0.05 cm and maximum
velocities of about 0.5 cm/s. With these small amplitudes, the linear shelf wave can be propagated
quite accurately by the models.

Table 15 shows the error in the cross-channel velocity from the models for horizontal grid
resolutions ranging from 2 to 16 km. These grid resolutions provide from 64 to 8 points per
wavelength in the along-channel direction and from 32 to 4 points in the cross-channel direction.
The surface elevation and velocity calculated from the analytical solution at 48 h are shown in
Fig. 27, and a comparison of the cross-channel velocity fields from the models at 48 h for the case
with Ax = 8 km is shown in Fig. 28. The cross-channel velocity from the models can be compared
with the analytically calculated cross-channel velocity shown in Fig. 27.

The errors in Table 15 increase as the resolution of the wave decreases, as expected. With
64 points per wavelength, the shelf wave is propagated very accurately with little phase error and
a damping timescale that exceeds 2 y. With 8 points per wavelength and only 4 points in the cross-
channel direction, the wave is still propagated fairly well, except that the phase speed has a large
error.
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With ECOM-si, the cross-channel velocity field increased in amplitude at the beginning of the
shelf wave simulations and then decreased slowly. The initial increase ranged from 1.3% for
Ax = 2 km to 10% for Ax = 16 km. The cause of the increase was not determined. The amount of
the initial increase was not affected by the timestep and the initial fields used were checked against
those used for the other models. Note that the damping timescale in Table 15 reflects only the decrease
in the wave amplitude after the initial increase. The RMS error for ECOM-si in Table 15 does, however,
reflect the initial increase, and this is the reason it is larger than the RMS error for the other models.

Simulation of the shelf waves with ECOM-si with the original, lagged treatment of the Coriolis
terms was also tried. With this treatment of the Coriolis terms, the amplitude of the shelf waves
increased steadily with time. The increase at 48 h was 2.5% with Ax = 2 km and At=400 s and was
9.2% with Ax = 8 km and At = 1600 s.

All the simulations of the barotropic shelf waves discussed so far have used sigma vertical
coordinates. Some additional simulations were conducted with SZM to investigate the propagation
of the barotropic shelf wave using z-levels. Figure 29 shows results at 48 h using SZM with
Ax = 2 km (64 points per wavelength) and 10 uniformly spaced z-levels (z = 10 m). The results
look quite noisy compared with the analytical solution in Fig. 27 and with the sigma coordinate
simulations in Fig. 28 with significantly less horizontal and temporal resolution. A problem here
is that with the bathymetry truncated to the nearest model level in SZM, the specified bathymetry
(103) is not very well resolved.
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Fig. 28- Comparison of the cross-channel velocity fields at 48 h from the models for
the propagation of a barotropic shelf wave: (a) POM, (b) ECOM-si, (c) SZM. The
horizontal grid spacing for the models is 8 km, and the barotropic timestep is 80 s
for POM and 1600 s for ECOM-si and SZM. The contour interval is 0.05 cm/s.
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What SZM does (approximately) is propagate the shelf wave that is consistent with the
step-wise bathymetry that is used with the model rather than the shelf wave derived for the smooth,
exponentially varying bathymetry that was used to calculate the analytical solution. Figure 30
shows the analytical solution (see App C for the derivation) for the cross-shelf velocity for the step-
wise bathymetry used in the SZM model simulation in Fig. 29. The analytical solution for the
step-wise bathymetry looks much like the model solution for the step-wise bathymetry.

Figure 31 shows results for the cross-channel velocity at 48 h for simulations conducted with
SZM with z-levels with finer vertical grid resolution, i.e., with (a) 30 uniformly spaced z-levels
(Az = 3.33 m), (b) 60 uniformly spaced z-levels (Az = 1.67 m), and (c) 51 z-levels with a vertical
stretching of the grid employed so as to exactly resolve the bathymetry represented by (103). Errors
for these simulations are reported in Table 16. From Fig. 31 and Table 16, it can be seen that the
shelf wave propagated on the z-level grid becomes more like the analytical solution for the smoothly
varying bathymetry when the true bathymetry is more accurately represented.

The best solution with the z-level grids is obtained with the stretched grid of 51 points that was
set up to exactly resolve the bathymetry. However, the errors for this case (Table 16) are still larger
than the errors obtained for the simulations with sigma coordinates, and the damping is signifi-
cantly greater than the damping for the simulations with sigma coordinates (Table 15). A problem
with the z-level grid, besides difficulty in resolving the bathymetry, is interaction of the horizontal
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Fig. 30 -Analytically calculated cross-channel velocity
field for a barotropic shelf wave propagating along
step-wise bathymetry. The step-wise bathymetry is the
same as that used by the SZM shelf-wave simulation
with a z-level grid with Az = 10 m.

Fig. 31 - Cross-channel velocity fields at 48 h for the
propagation of a barotropic shelf wave with SZM
for different z-level vertical grids: (a) 30 uniformly
spaced z-levels, (b) 60 uniformly spaced z-levels, and
(c) 51 z-levels with variable spacing so as to exactly
resolve the exponentially varying bathymetry. The
horizontal grid spacing for these results is 2 km and
the timestep is 400 s.
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Table 16- Errors in the Cross-Channel Velocity for the Propagation
of Barotropic Shelf Waves Using SZM with Different z-Level Vertical
Grids. The Grid with 51 z-Levels is Stretched so as to Match the
Exponentially Varying Bathymetry Exactly. Horizontal Resolution for
all the Runs is 64 Points Per Wave with Ax = 2 km, At = 400 s.

SPEED DAMP RMS
Az ERROR TIME ERROR

VERTICAL GRID (m) (%) (h) COR (cm/s)

10 Uniform z-Levels 10.00 1.6 200 0.95540 0.0548
30 Uniform z-Levels 3.33 -1.0 300 0.98777 0.0339
60 Uniform z-Levels 1.67 0.5 330 0.99862 0.0240
51 Stretched z-Levels variable -0.5 330 0.99998 0.0225

currents with the bathymetry steps near the bottom. Two consequences of this interaction, relative
to the sigma coordinate simulations, are that the damping is greater and the horizontal currents are
not barotropic near the bottom.

8.0 TEST FORMATION OF UPWELLING/DOWNWELLING FRONTS

The models were compared for the formation of upwelling and downwelling fronts using a
2-D model domain with idealized geometry. Similar upwelling and downwelling problems have
recently been investigated by Allen et al. (1995) and Allen and Newberger (1996) with POM.

Figure 32 shows the model domain, which consists of a symmetric, 2-D basin with gently
sloping shelves on both the east and west sides out to 100 km, steeper slope regions from 100 km
out to 200 km, and an interior of depth 1000 m. The depth at the shelf break is 100 m and the total
width of the basin is 604 km. To avoid "drying" of the shallowest points near the coast, the
minimum static bottom depth was set to 5 m. The gradients of the bottom slope along the shelf
and slope regions are 0.001 and 0.009, respectively.

The models were run in "pseudo 2-D" mode for this problem, with periodic boundary conditions
and two interior points in the along-shore (y) direction.

The initial condition consists of a horizontally uniform thermal stratification (Fig. 32) with the
ocean at rest. The initial SST is 20'C and most of the thermal stratification lies between 50- and
100-m depth. Salinity is set to a constant 35 psu. The forcing consists of a uniform, along-shore,
northward-directed surface wind stress of 2 dynes/cm2 . The wind stress is ramped up linearly in
time over 24 h. Surface heat fluxes are zero. All the results presented are at 40 d.

The models were run at two different grid resolutions. One set of simulations was conducted
with a 2-km horizontal grid and 50 vertical layers/levels with a 5-m-thick layer at the surface in
the deep water and uniform stretching to the bottom. For the second set of simulations, the horizontal
resolution was reduced to 10 km and the vertical grid was reduced to 20 layers/levels with a
surface layer thickness in the deep water of 10 m and a uniform stretching to the bottom.
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Figure 33 shows temperature and along-shore velocity at 40 d for the model simulations with
the 2-km grid and 50 vertical sigma layers. Table 17 lists the minimum SST on the upwelling
side, the maximum SST on the downwelling side, and the maximum along-shore currents. The
northward wind stress induces upwelling on the west side of the domain and downwelling on
the east side. Strong along-shore currents develop that are in approximate geostrophic balance
with the cross-shore pressure gradients. The temperature sections show good general agreement. A
curious feature that appears in the simulations is a sharp rise in the isotherms just seaward of the
shelf break on the downwelling side. This is caused by vertical mixing, which is enhanced at this
location by the strong shears in the along-shore current.

The velocity sections show maximum along-shore currents of 130-140 cm/s on the upwelling
side and 190-200 cm/s on the downwelling side (Fig. 33, Table 17). The maximum currents are
located just seaward of the shelf break. As in the experiments of Allen (1995, 1996), the along-
shore current on the upwelling side is a maximum at the surface and decreases with depth, whereas
on the downwelling side, the maximum current extends quite deep. The along-shore currents for the
models agree quite well.

Figure 34 shows temperature and along-shore velocity for the simulations with the 10-km grid.
The accuracy of the 10-km simulations can be judged based on the 2-km results. The upwelling
front is more diffuse and the along-shore currents are weaker for the 10-km simulations because
of the reduced grid resolution and the resulting stronger horizontal mixing. The weakest currents
in the 10-km simulations are for ECOM-si. The 10-km simulation with ECOM-si was rerun with
the timestep reduced from 1200 to 200 s to see how much difference might be due to temporal
truncation error. However, with the smaller timestep, the currents were only slightly higher (Table 17).

A notable occurrence in all the sigma coordinate simulations is the warming of the near-surface
water above the initial SST of 20'C on the outer part of the shelf on the downwelling side. This
warming cannot really be ascertained in Figs. 33 and 34 because of the shortage of contour labels.
However, the warming can be seen in Fig. 35a, which shows an expanded view of the temperature
field in the downwelling area from the 10-km simulation with POM. Also, the maximum SST
values at 40 d for all the runs are reported in Table 17.

Since there is no explicit heating in these simulations, we should expect that the temperatures
at 40 d would not exceed the initial maximum temperature of 20'C. However, the maximum
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Table 17 Results from Upwelling Downwelling

Experiments at 40 d

UPWELLING DOWNWELLING
SIDE SIDE

Ax At MIN SST MAX V MAX SST MAX V
MODEL | (km) (s) (OC) (cm/s) (0 C) [ (cm/s)

Results with Sigma Coordinate Grid

POM 2 200 8.4 138 20.5 202
ECOM 2 200 8.3 135 20.9 190

SZM 2 200 7.8 131 20.5 202

POM 10 1200 8.9 108 22.2 170
ECOM 10 1200 9.4 94 22.4 143
SZM 10 1200 8.4 103 22.0 162

ECOM 10 200 9.7 96 22.3 146

Results with z-Level Grid

SZM 2 1200 8.4 132 20.0 200
SZM | 10 1200 10.2 86 20.2 156

temperature on the downwelling shelf at 40 d is 20.5-20.9 0 C for the 2-km simulations and
22.0-22.4 0C for the 10-km simulations (Table 17). This spurious heating is caused by he procedure
that was used for horizontal diffusion of T and S in which the horizontal mean profile is subtracted
from the T and S fields when performing horizontal diffusion in sigma coordinates (this is discussed
in Sec. 2.9). The anomaly from the horizontal mean temperature profile in the downwelling area
is shown in Fig. 35b and is a maximum of 7-8 0C at the outer edge of the shelf. This large, positive
anomaly diffuses heat in all directions and the diffusion toward the shelf causes the warming of the
water on the shelf. The spurious warming is reduced as the horizontal grid resolution is increased
because the horizontal diffusion coefficients are reduced.

This illustrates a pitfall of subtracting the horizontal mean profile from a field when performing
horizontal diffusion in sigma coordinates. It might be preferable, instead, to subtract a smooth
but horizontally varying field that would be able to account for large departures from the basin
horizontal mean. Such a field would have to be recomputed periodically if it changes significantly
in time. This procedure was not tried here, but has been used by other sigma-coordinate modelers.
It is noted that in POM, the arrays used to hold the smoothed values of T and S that are subtracted
from the T and S fields when performing horizontal diffusion are most recently referred to as
"climate fields" (Mellor 1996), which suggests fields that have 3-D structure, but are spatially
smooth. A general concern with such methods would be to avoid spurious development of the field
that might be caused by "steering" the field via the diffusion term towards some computed "mean"
structure, especially if that mean is recomputed periodically from the evolving fields.

The upwelling/downwelling simulations with 2- and 10-km horizontal resolution were repeated
with SZM with a z-level vertical coordinate. The z-level grids were set up to have the same vertical
resolution in the deep water as the sigma coordinate grids. Figure 36 shows plots of temperature
and along-shore velocity with SZM with the z-level grids, and Table 17 lists the maximum and
minimum SST and the maximum along-shore currents. With 2-km horizontal resolution and 50 vertical
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layers, the results with SZM with z-level and sigma coordinates are fairly similar. The maximum
along-shore currents are about the same (Table 17). The minimum SST on the upwelling side with
z-levels (8.40 C) is greater than was obtained with SZM with sigma coordinates (7.80C), though it
is similar to the values obtained with POM and ECOM-si.

With 10-km horizontal resolution and 20 vertical layers, the differences between the SZM
z-level and sigma coordinate results are larger, e.g., the along-shore current and cooling on the
upwelling side show larger differences (Table 17). Some of the differences are due to reduced
vertical resolution with the z-level grid in shallower water, which provides reduced resolution of
both the model fields and the bathymetry. However, an experiment conducted with a 10-km grid
with higher vertical resolution showed that some differences remained, i.e., some of the differences
are due to other factors.

It can be noted that the spurious warming of the near-surface temperature that occurs on the
downwelling shelf with sigma coordinates does not occur when z-levels are used. The maximum
SST of 20.2 0C that occurs in the 10-km simulation with z-levels is probably due to a small numerical
advective "overshoot" that can occur at fronts with the second-order, centered advection schemes
used in these models (Sec. 3.2).

The trends seen in these results illustrate what we might expect, that as grid resolution is
increased, differences between simulations conducted with sigma and z-level coordinates tend to be
reduced. At coarse resolution, the sigma and z-level coordinates each have particular advantages
and disadvantages.

9.0 SUMMARY

Several ocean models that are being used for coastal ocean simulation and prediction, POM,
ECOM-si, SZM, and SCRUM (Version 2.1) were tested for their ability to simulate physical processes
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of importance in the coastal ocean. The basic processes for which the models were tested included
advection, vertical mixing, propagation of surface, internal, and coastal-trapped waves, and the
formation of upwelling and downwelling fronts.

Because of some developmental problems with the version of SCRUM that we initially obtained,
and the later release of an extensively modified SCRUM code (Version 3.0) by Rutgers, SCRUM
was not included in many of the model tests that were conducted.

The model tests revealed some particular problems with the individual models, which will be
briefly summarized here. In many cases, these are limitations that occur in certain situations. These
problems and limitations should be kept in mind when applying the models or when selecting a
model for a particular application.

The forward time-differencing scheme used by ECOM-si suffers from significantly higher
temporal truncation error than the leapfrog and Adams-Bashforth schemes used by the other models.
The forward treatment of the advection terms by ECOM-si is quite dispersive. The forward treatment
of the Coriolis term is unstable in that it tends to cause the growth of inertial oscillations. This error
is small and generally not noticeable with the small timesteps typically used in high-resolution
coastal modeling, but can become significant when the timestep exceeds about 200 s. (The Coriolis
term was converted to an Adams-Bashforth treatment to avoid this timestep limitation.) The for-
ward time-differencing scheme in ECOM-si can also cause a modification of the ambient stratification
during internal wave propagation. This is caused by numerical diffusion due to a phase (timing)
error between the vertical velocity and the temperature and salinity values in the vertical advection
terms of the temperature and salinity conservation equations.

The implicit treatment of the free surface in ECOM-si and SZM is much less accurate for the
propagation of surface waves than the split-explicit scheme used by POM in terms of phase speed
error and damping. The phase speed errors for ECOM-si and SZM are similar, but ECOM-si's fully
implicit treatment of surface waves is significantly more damping than SZM's partially implicit
treatment. We note, however, that with the high temporal and spatial grid resolution typically used
in coastal modeling, ECOM-si and SZM generally simulate the tides fairly accurately since the long
wavelength and period of the tides are well resolved. If coarse grids and large timesteps are used,
the accuracy of tidal prediction with the implicit treatment of the free surface may be a concern.

Sigma vertical coordinates can suffer from problems with their horizontal advection, diffusion,
and pressure gradient terms in regions of steep bathymetry. One problem that can occur is overshoot
of the spatially centered advection term in the bottom layers at a steep bottom slope. This is due
to the sharp change (i.e., "front") that can occur in the bottom sigma layers when a shallow point
is right next to a deep point. Advection between the shallow point and the deep point can result in
severe advective overshoot due to the large change in the advected field between the two points.

The practice of subtracting a spatially averaged profile from the temperature and salinity fields
when calculating horizontal diffusion in sigma coordinates can result in significant spurious diffusion
if the local temperature or salinity structure is much different from the mean profile that is subtracted.
In a downwelling problem, the positive temperature anomaly in the downwelling region, relative to
the mean temperature profile in the model domain, resulted in a spurious warming of the water
shoreward of the downwelling area due to diffusion of heat from the downwelling area toward
the shore.

Z-level grids also have particular shortcomings. If the bathymetry is truncated to the nearest
z-level, as is done with a number of z-level models besides the SZM model that is included in this
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study, the problem that the model actually solves is that for the stair-step bathymetry being used
in the model, and not the problem for the true bathymetry that the stair-step bathymetry is approxi-
mating. (This may seem obvious, but there is a tendency to think in terms of the bathymetry one
is modeling, rather than in terms of the bathyinetry that is actually in the model.)

On-shore and offshore barotropic flows can be noticeably distorted by the stair-step approximation
of a z-level grid. The horizontal convergence of the flow is focused at the faces of the stair-steps
rather than being spread out over the region of decreasing depth, i.e., the flow in the model is the
flow that would result if the step were actually present. In a problem with an on-shore, barotropic
tidal flow, the isotherms were distorted by the vertical "jets" that occurred at the faces of the steps.
In the real ocean, internal waves are generated by such tidal flows in regions where there are sharp
bathymetric changes, but this should not happen in a region where the bathymetry is changing
gradually. Topographic shelf waves, which depend on changes in bottom depth for their existence,
can be quite distorted by a stair-step approximation to a smoothly varying bathymetry. The best
solution to these problems with z-level vertical coordinates may be to truncate the bottom grid cell
of the z-level grid to the bathymetry, rather than rounding the bottom depth to the nearest model
level. This adds complication, but is being done in some z-level models.

The Crank-Nicolson scheme used for vertical mixing in SCRUM 2.1, where the values being
diffused are evenly weighted at the old and new time levels, causes diffusive overshooting if the
vertical diffusion coefficients are large, which they frequently are in realistic mixing situations. The
result is that vertical gradients in the field being diffused (temperature, salinity, or velocity) can be
reversed (or distorted) between adjacent vertical points. The computation does not blow up, but the
resulting mixing can be noisy and inaccurate. All the other models use fully implicit vertical
mixing, with the field being diffused weighted fully at the new time level, to avoid this problem.

Checkerboard mixing, where a fluctuation in the mixed-layer depth sets up at alternate gridpoints,
was found to occur with the models under certain conditions of light to moderate winds and surface
heating (or a positive surface buoyancy flux). The checkerboard mixing occurs because of the
horizontal averaging that is used when computing vertical mixing on a C grid, where the velocity
and the temperature-salinity points are at different locations. As a practical matter, checkerboard
mixing is not usually seen in realistic simulations because of the temporal and spatial changes in
the surface forcing that tend to suppress or mask the phenomenon.
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Appendix A

STABILITY ANALYSIS FOR SURFACE WAVE PROPAGATION

The properties of a numerical scheme can be determined by performing a stability analysis of
the scheme. Here we will analyze the propagation of surface waves in the models using a procedure
referred to as a von Neumann stability analysis. This analysis can provide information about the
stability and damping properties of the scheme and about the dispersion or phase speed error. A
good discussion of the von Neumann stability analysis can be found in Mesinger and Arakawa
(1976), and a discussion of the analysis of the Asselin filter can be found in Asselin (1972). We
will look at the propagation of surface waves for the case where f = 0, which significantly simplifies
the analysis of the numerical schemes.

The general procedure is to substitute a solution of the form

C(x, t) = Z(t)eikx (Al)

into the linearized numerical equations, where Z is the time-dependent part of the solution and k
is the horizontal wavenumber. This allows the determination of the behavior of a single Fourier
spatial mode of wavelength L = 2alk. One then solves for the amplification factor X = Z ( + )/Z(n),
which is, in general, complex. The magnitude or modulus of X denotes the stability and damping
properties of the scheme, i.e., how the magnitude of the solution changes on successive timesteps.
From the phase change of . each timestep, the propagation speed of the waves in the numerical
solution can be computed.

The linearized equations for the propagation of surface gravity waves in the x-direction for
f= 0 are

au at (A2)
at ax'

- = -H-. (A3)
at ax

Al. STABILITY ANALYSIS FOR SURFACE WAVES IN POM

For POM, the numerical scheme for the propagation of surface waves is an explicit leapfrog
scheme with an Asselin temporal filter. The finite difference forms of (A2) and (A3) for this
numerical scheme are

(i) (n)
C. t-4. 1

U(n + 1) = A[u(n- ')]_2A tg 2()Ax '(4
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(n) (n)
U. 1-U. I

t;(n + 1) = A[t;(n -1]_2A tH Ax 2 (A5
Ax (S

A [] denotes application of the Asselin filter, which is defined as

A[u(n)] = u( ) + v(u(n - - 2u(n) + u(n + 1), (A6)

where v is the filter coefficient.

Substitution of the solution form (Al) into the numerical equations (A4)-(A6) and solving for
k gives

X = (iq + V) ((1 _ V)2 - q2)2 ) (A7)

where

!2At kAx (8
q =(gH )2 ̂ . sin ( 2-) (A8)

Hence, the amplification each timestep is

1 1
|k1 = ((1 _ w)2 + 2 + 2v ((1 _ V)2 _ q2)2~ )2(A9)

and the phase change each timestep is

coAt = tan t (q/((l - v)2 - q2)2 + v), (AIO)

where is the frequency. The phase speed is then given by

0) 1 _q/(lva- 2 (All)c = - = -ttan ~ q~ /(1-V2_q2 + V)). Al

Note that for v = 0 we get Ikj = 1, i.e., there is no damping of the basic leapfrog scheme without
the Asselin filter. The damping is due entirely to the filter.

A2. STABILITY ANALYSIS FOR SURFACE WAVES IN ECOM-SI

For ECOM-si, the numerical scheme for the propagation of surface waves is a two-time-level,
fully implicit scheme, i.e.,

(n+1) (n+1)
1 +). _

U~ 1 A~)_&tg 2 Ax 2,(A12)
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(n+i) (n+1)
U. 1 -U. 1

t(n + 1) = (n) _A tH A - 2
,&x

(A13)

Again, substitution of the solution form (Al) into the
ing for X gives

numerical equations (A12)-(A13) and solv-

1 ! iq
+q2

(A14)

Hence, the amplification each timestep is

1X1=(1 +q2 ) 2 (A15)

and the phase change each timestep is

oAt = tan 1l(q) . (A16)

The phase speed is then given by

c= I) = tan- (q) .(A17)
tk

Note that the amplification factor is always less than 1, i.e., the scheme is always stable.

A.3 STABILITY ANALYSIS FOR SURFACE WAVES FOR SZM

For SZM, the numerical scheme used in this report for the propagation of surface waves is a
trapezoidal implicit, leapfrog scheme with an Asselin temporal filter. The finite difference form of
(A4)-(A5) for this scheme is

(n+l) (n+l)
C.1 - . 1

2 + -~ 1--2

Ax
At

A[ (n I)]-A[)(n-1)

to 1 . i 2

5 Ax

(n +1)
U. 1

) (n +1)
-U. 1

2-.

Ax

Substitution of the- solution form (Al) into the
(for the Asselin filter) and solving for X gives

X = (v + ((1- V)2 + q2 (1 -

'A t

A[u(n-) -A[u(n-I)]
Aiu. ]-u 1I

r £ 
Ax

numerical equations (A18), (A19), and (A6)

! 1+iq
2v))2)

1 +q

(A18)

(A19)

(A20)

'11
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Hence, the amplification each timestep is

(A21)

and the phase change each timestep is

wAt = tan-l(q) (A22)

where is the frequency. The phase speed is then given by

(A23)
k Atk

The amplification is always less than or equal to 1 and the scheme is always stable. When v = 0,
we get 1X1 = 1, i.e., there is no damping of the waves. Hence, like POM, the damping of the waves
is due entirely to the Asselin filter. The phase speed error is the same as for ECOM-si, and is not
affected by the value of v.

Figures 37-39 show plots of the phase speed error and damping of the numerical schemes as

a function of the Courant Number C. = (gH) /2 At/Ax and the number of gridpoints per wavelength

that are used to resolve the wave. The phase speed error is expressed as the percent error relative
to the analytically determined phase speed for the wave, and the damping is expressed as the
percent damping per wave period based on the analytically calculated wave period. The damping
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Fig. 37 -(a) Phase speed error and (b) damping for the numerical scheme used by POM for the free surface mode.
The phase speed error is expressed as the percent error relative to the analytically calculated phase speed. The damping
is expressed as the percent damping per wave period based on the analytically calculated wave period. The Asselin
filter coefficient for this calculation is set to 0.05. Contour labels less than 0.1 are multiplied by 10,000.
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error for POM and SZM depends on the value of the Asselin filter coefficient v. For the plots in
Figs. 37 and 39, v was set to the typically used value of 0.05. Values are shown for POM only
for values of CU less than 0.5, since POM's explicit scheme is unstable for Cu > 0.5.

The phase speed error for all three schemes is the same at very low values of Cu, but whereas
the phase speed error for POM decreases as Cu increases (up to the point at which POM's explicit
scheme becomes unstable at Cu = 0.5), the phase speed error for ECOM-si and SZM (which is the
same) increases. The damping for POM and SZM is similar for Cu < 0.5 and is much less than
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the damping of ECOM-si at the same value of Cu. Of course, it must be remembered that
ECOM-si and SZM will typically be using much larger values of Cu for surface waves than POM
because of the small, barotropic timestep used by POM.
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Appendix B

INTERNAL WAVE PROPAGATION ERROR WITH ECOM-SI

The propagation of internal gravity waves with ECOM-si resulted in some modification of the
ambient stratification. An analysis of internal gravity wave propagation with ECOM-si's.forward
time-differencing scheme led to the conclusion that this is primarily due to numerical diffusion of
the ambient stratification caused by a phase (timing) error between the salinity and velocity terms
in the salinity equation's vertical advection term.

The main terms governing the propagation of internal waves are the horizontal baroclinic
pressure gradient and the vertical advection of density. For internal wave propagation as described
in Sec. 6.0, i.e., for propagation in the x-direction with the vertical density gradient being due to
salinity stratification, and with f= 0, the relevant momentum and salinity equations are

au - 1ap (BI)
at pI ax'

as = a(ws)
at az (B2)

The salinity field can be split into two parts, one part S, that describes the ambient stratification,
which, for the problem being considered here, depends only on depth, and another part S' that
describes the changes in the ambient salinity field due to the propagating wave, i.e.,

S(x, z, t) = So(z) + S (x, z, t). (B3)

Hence, the salinity equation can be written as

as a(WS,) a(wS) (B4)
at az az (4

For small amplitude waves, the main contribution to the vertical advection of salinity is due to the
vertical advection of the ambient stratification SO. The contribution from the vertical advection of
S' is small.
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With the two-time-level numerical scheme used by ECOM-si, the momentum is first updated
using the horizontal pressure gradient that has been calculated using the old temperature and salinity
values

U(n+l)=U(n) At ap(n) (B5)
po ax

and then the new salinity is calculated using the newly calculated velocities for the advection term

S(n+ 1) = S(n) Aa/ ( + * (B6)
az

This calculation sequence can be conceptualized as a leapfrogging of the momentum and density
terms in time (Fig. 40), even though the model is not explicitly written as if this were the case. With
this leapfrogging, the velocity and salinity fields are offset from each other by half a timestep and
the main terms describing the internal wave propagation are accurately centered in time, i.e., the
salinity used for the calculation of the horizontal pressure gradient is located between the old and
new values of u, and the velocity used for advection of salinity is located between the old and new
values of S.

A quantity, however, that is not centered in time is the value of S used in the advection
term. The value that is used is the old value S(n), which effectively lags w(n + 1) by half a timestep.
Since most of the contribution to the salinity advection is from the ambient salinity stratification
S, only a secondary contribution to the salinity advection suffers from a phase lag error. However,
it is this phase lag of S in the advection term that results in the modification of the ambient salinity
stratification.

If (B4) is horizontally averaged over one wavelength, we get an expression for the rate of
change with time of the horizontally averaged salinity S(z, t)

ad a(wso) a(ws')
at az az ' (B7)

where the overbar indicates a horizontal average. The first term on the right side of (B7) is zero, since
SO has no horizontal variation and 3 =0 . The second term on the right side of (B7) describes the time

usn) V(") W(n) U(n+l) (n+l) (n+l)

Fig. 40- Schematic showing the effective leapfrogging
BASELINEPRESSURE ADVECTIONTERM in time of the momentum and salinity conservation

u AND v EQUATIONS TAND EQUATIONS equations of ECOM-si for the main internal gravity wave
terms
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rate of change of the horizontally averaged salinity due to the vertical divergence of the salt
flux defined by wS'. Using (74) and (75) from Sec. 6.0, we can write wS' as

wS' =A2- (sin( sin (kx- ot) cos (bc- t). (B8)

If (B8) is horizontally averaged over one wavelength, the product of sin (x - wt) and cos (kx - wt)
integrates to zero, i.e., there is no net vertical flux of salt due to the passage of the internal wave.
However, if there is an error in the phase of S' relative to w, the horizontal average of (B8) will
not be zero.

Since we estimate that for internal wave propagation in ECOM-si, the value of S in the salinity
advection term effectively lags w by half a timestep, we get

2co 2
wS' =A N sin (mz) sin (k- ot) cos ( - (t- A t/2)) . (B9)

Using some trigonometric relations, this becomes

2~~~~~~~S' A2 sin2(mz) sin2 (kxr-wt) sin (-j) . (B10)

Taking the horizontal average over one wavelength gives

___O 2 AtwS' = -A sin (mz) sin ( ) (Bll)

Hence, the mean vertical flux of salinity due to the phase lag of S' with respect to w is downward.
Note that the direction of this flux is against the ambient salinity gradient. The rate of change of
the salinity with time is given by the negative of the spatial derivative of the flux and is

as a(wS ') 2 N2 Om At
az= =A 2g sin (2mz) sin (W ) (B12)

The results of the analysis predict that the rate of change of the background stratification with time
depends on the sine of the phase error between w and S in the salinity advection term, and is
proportional to the square of the amplitude of the internal wave.

Figure 41a shows a comparison of 5' calculated by (B12) with the result from ECOM-si at 24 h
for the propagation of the 8-km wavelength internal wave reported in Sec. 6.0 with At = 200 s. Also
shown are comparisons from two similar experiments - one in which the amplitude of the wave was
increased from 100 to 200 cm with At kept at 200 s and another in which the amplitude was increased
to 400 cm and the timestep was increased to 400 s. The comparisons show good agreement between
the analysis and the results from ECOM-si in terms of the structure and amplitude of the change
in the ambient stratification. At the higher wave amplitudes, the analysis appears to overestimate
the change in the ambient stratification slightly.
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Fig. 41 - Change in ambient stratification during internal wave propagation for ECOM-si
(solid line) and as predicted by numerical analysis (dashed line) after 24 h. The
wavelength is 8 km. The internal wave amplitude and timestep are (a) 100 cm and
200 s, (b) 200 cm and 200 s, and (c) 400 cm and 400 s.
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Appendix C

ANALYTICAL SOLUTION FOR TOPOGRAPHIC WAVES
WITH STAIRSTEP BOTTOM

The linearized equations for barotropic shelf waves propagating in the x-direction along a
straight coast with bathymetry varying only in the offshore direction are

au
at =tV _9 d4, (Cl)

at ax

av -f - ay (C2)t -flu-g-, (2
at a

au av0=-H --- (C3)
ax ay

Note that the time derivative has been scaled out of the continuity equation. This term is not
essential to the physics of small-amplitude, topographic waves, and its elimination simplifies the
solution of the equations (LeBlond and Mysak 1978).

Cross-differentiation of the momentum equations yields the vorticity equation

a (av au) (au y) (C4)

a ta aX y aX ay

Based on the continuity equation, we can define a stream function W where

Hay' (Cs)

v 1 a (C6)

Substituting the stream function into the vorticity equation, we get

I__2 a IT f aH aJax2( (1 d)) a ax + . (C7)
H a2 ay y H2 d=-y ax
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We can assume a traveling wave solution in x of the form

'41 = pt1(y) ei (x - owt) (C8)

where k is the along-shore wavenumber and w is the frequency.

Substituting into (C7) and dropping the prime on A, we get an equation for the cross-shore
structure of the topographic wave

a 1 a fk aH k* (C9)

This equation can be solved for a particular bathymetry H(y).

For a region of constant depth, (C9) simplifies to

a2 -F k2=o. (C10)
ay2

Solutions of this equation have the form of cosh and sinh functions.

Since a step-wise bathymetry consists of a series of adjoining regions of uniform depth, with
a discontinuity in the depth between each region, the solution can be represented as cosh or sinh
functions within each region of uniform depth, with the amplitude of the functions determined by
appropriate matching conditions between the regions.

For a domain extending from y = O to y = Ly. in which the depth between yj_ and yj is Hj for
j = 1 to j = m, the solution within the region from yj - 1 to yj can be represented as

'j = Aj sinh(ky) + Bj cosh(ky) . (C 1)

Boundary conditions of zero transport ( = 0) at y = 0 and y = Ly give

= sinh(ky), (C12)

,Fm =Am sinh(k(y-Ly)). (C13)

The unknowns A, B1, and ) can be determined from the matching conditions between the
regions at each yj (Stocker and Hutter 1987)

Fj = Vj + >(C14)

aj kf W 1 'Vj + 1_ kf 1 (C15)

(_j_~-0)- PHj ay Co'4§+')H. (15

This coupled set of 2m -2 equations for the cross-shore structure of the topographic wave for a
stairstep bottom can be solved numerically using a shooting method.
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